We present an invariance principle for a non-adapted stationary sequence of random variables, conditional with respect to the σ-algebra of invariant sets. It is a generalization of an invariance principle of Wu and Woodroofe (2004, Corollary 3) using a method introduced by Volný (2006). An example shows that the method cannot be used directly for a generalization of the invariance principle of Peligrad and Utev (2005).
Nous présentons un principe d'invariance conditionnel (par rapport à la tribu des ensembles invariants) pour une suite stationnaire non-adaptée de variables aléatoires. Il généralise le principe d'invariance de Wu et Woodroofe (2004, Corollary 3) en utilisant la méthode introduite par Volný (2006). A l'aide d'un exemple, nous montrons que la méthode ne donne pas une généralisation du principe d'invariance de Peligrad et Utev (2005).
Accepted:
Published online:
Jana Klicnarová 1; Dalibor Volný 2
@article{CRMATH_2007__345_5_283_0, author = {Jana Klicnarov\'a and Dalibor Voln\'y}, title = {An invariance principle for non-adapted processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {283--287}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.05.009}, language = {en}, }
Jana Klicnarová; Dalibor Volný. An invariance principle for non-adapted processes. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 283-287. doi : 10.1016/j.crma.2007.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.009/
[1] Necessary and sufficient conditions for the conditional central limit theorem, Ann. Probab., Volume 30 (2002), pp. 1044-1081
[2] J. Dedecker, F. Merlevède, D. Volný, On the weak invariance principle for non-adapted sequences under projective criteria J. Theor. Probab. (2007), in press
[3] Central limit theorems for additive functionals of Markov chains, Ann. Probab., Volume 28 (2000), pp. 713-724
[4] L. Ouchti, D. Volný, 2007, in preparation
[5] A new maximal inequality and invariance principle for stationary sequences, Ann. Probab., Volume 33 (2005), pp. 798-815
[6] On the invariance principle and functional law of iterated logarithm for nonergodic processes, Yokohama Math. J., Volume 35 (1987), pp. 137-141
[7] Martingale approximation of non-adapted stochastic processes with nonlinear growth of variance (P. Bertail; P. Doukhan; P. Soulier, eds.), Dependence in Probability and Statistics Series, Lecture Notes in Statistics, vol. 187, Springer, 2006
[8] D. Volný, preprint, 2007
[9] Martingale approximations for sums of stationary processes, Ann. Prob., Volume 32 (2004) no. 2, pp. 1674-1690
Cited by Sources:
Comments - Policy