It is well-known that for every the function represents the characteristic function of an infinitely divisible probability distribution. The purpose of this Note is to present a construction of a stochastic process having these distributions as its marginals. Functional limit theorems for this ‘zeta process’ and other related processes are also indicated.
Il est bien connu que pour tout la fonction représente la fonction caractéristique d'une loi de probabilité infiniment divisible. L'objectif de cette Note est de présenter une construction d'un processus aléatoire possédant ces lois marginales. Des théorèmes limite fonctionnels pour ce « processus zeta » et d'autres processus voisins sont indiqués également.
Accepted:
Published online:
Werner Ehm 1
@article{CRMATH_2007__345_5_279_0, author = {Werner Ehm}, title = {A {Riemann} zeta stochastic process}, journal = {Comptes Rendus. Math\'ematique}, pages = {279--282}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.023}, language = {en}, }
Werner Ehm. A Riemann zeta stochastic process. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 279-282. doi : 10.1016/j.crma.2007.07.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.023/
[1] A stochastic interpretation of the Riemann zeta function, Proc. Natl. Acad. Sci. USA, Volume 90 (1993), pp. 697-699
[2] Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc., Volume 38 (2001), pp. 435-465
[3] Martingale convergence to infinitely divisible laws with finite variances, Trans. Amer. Math. Soc., Volume 162 (1971), pp. 449-453
[4] A family of probability densities related to the Riemann zeta function (M. Viana; D. Richards, eds.), Algebraic Methods in Statistics and Probability, Contemporary Mathematics, vol. 287, Amer. Math. Soc., Providence, RI, 2001, pp. 63-74
[5] On the Gaussian law of errors in the theory of additive functions, Proc. Natl. Acad. Sci. USA, Volume 25 (1939), pp. 206-207
[6] Limit Distributions for Sums of Independent Random Variables, Addison–Wesley, Cambridge, 1954
[7] Some remarks on the Riemann zeta distribution, Rev. Roumaine Math. Pures Appl., Volume 51 (2006), pp. 205-217
[8] The Riemann zeta distribution, Bernoulli, Volume 7 (2001), pp. 817-828
Cited by Sources:
Comments - Policy