Comptes Rendus
Probability Theory
A Riemann zeta stochastic process
Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 279-282.

It is well-known that for every σ>1 the function tζ(σ+it)/ζ(σ) represents the characteristic function of an infinitely divisible probability distribution. The purpose of this Note is to present a construction of a stochastic process having these distributions as its marginals. Functional limit theorems for this ‘zeta process’ and other related processes are also indicated.

Il est bien connu que pour tout σ>1 la fonction tζ(σ+it)/ζ(σ) représente la fonction caractéristique d'une loi de probabilité infiniment divisible. L'objectif de cette Note est de présenter une construction d'un processus aléatoire possédant ces lois marginales. Des théorèmes limite fonctionnels pour ce « processus zeta » et d'autres processus voisins sont indiqués également.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.07.023

Werner Ehm 1

1 Institute for Frontier Areas of Psychology and Mental Health, Wilhelmstr. 3a, 79098 Freiburg, Germany
@article{CRMATH_2007__345_5_279_0,
     author = {Werner Ehm},
     title = {A {Riemann} zeta stochastic process},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {279--282},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.023},
     language = {en},
}
TY  - JOUR
AU  - Werner Ehm
TI  - A Riemann zeta stochastic process
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 279
EP  - 282
VL  - 345
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.023
LA  - en
ID  - CRMATH_2007__345_5_279_0
ER  - 
%0 Journal Article
%A Werner Ehm
%T A Riemann zeta stochastic process
%J Comptes Rendus. Mathématique
%D 2007
%P 279-282
%V 345
%N 5
%I Elsevier
%R 10.1016/j.crma.2007.07.023
%G en
%F CRMATH_2007__345_5_279_0
Werner Ehm. A Riemann zeta stochastic process. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 279-282. doi : 10.1016/j.crma.2007.07.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.023/

[1] K.S. Alexander; K. Baclawski; G.-C. Rota A stochastic interpretation of the Riemann zeta function, Proc. Natl. Acad. Sci. USA, Volume 90 (1993), pp. 697-699

[2] P. Biane; J. Pitman; M. Yor Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc., Volume 38 (2001), pp. 435-465

[3] B.M. Brown; G.K. Eagleson Martingale convergence to infinitely divisible laws with finite variances, Trans. Amer. Math. Soc., Volume 162 (1971), pp. 449-453

[4] W. Ehm A family of probability densities related to the Riemann zeta function (M. Viana; D. Richards, eds.), Algebraic Methods in Statistics and Probability, Contemporary Mathematics, vol. 287, Amer. Math. Soc., Providence, RI, 2001, pp. 63-74

[5] P. Erdős; M. Kac On the Gaussian law of errors in the theory of additive functions, Proc. Natl. Acad. Sci. USA, Volume 25 (1939), pp. 206-207

[6] B.V. Gnedenko; A.N. Kolmogorov Limit Distributions for Sums of Independent Random Variables, Addison–Wesley, Cambridge, 1954

[7] A. Gut Some remarks on the Riemann zeta distribution, Rev. Roumaine Math. Pures Appl., Volume 51 (2006), pp. 205-217

[8] G.D. Lin; C.-Y. Hu The Riemann zeta distribution, Bernoulli, Volume 7 (2001), pp. 817-828

Cited by Sources:

Comments - Policy