Comptes Rendus
Mathematical Problems in Mechanics
Corner instabilities in a slender nonlinearly elastic cylinder: analytical solutions and formation mechanism
Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 55-58.

In this Note, we study the corner instabilities in a slender cylinder constituted by a nonlinearly elastic material. Starting from the three-dimensional nonlinear field equations, we derive, through a novel method, a singular dynamical system as the normal form equation. It is shown that this system can capture the corner instabilities. We are also able to obtain analytical expressions of the solutions. The mechanism that causes corner formations is also found.

Dans cette Note, on étudie les instabilités « en coin » dans un cylindre mince formé d'un matériau non linéairement élastique. Partant des équations nonlinéaires tri-dimensionnelle, nous obtenons par une méthode nouvelle un système dynamique singulier. On montre que ce système retient les instabilités en coin. Nous obtenons également les expressions analytiques des solutions. On met aussi en évidence le fait que l'effet de couplage entre la nonlinéarité du matériau et la longueur caractéristique est le mécanisme qui provoque l'apparition de coins.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.05.020

Hui-Hui Dai 1; Fan-Fan Wang 2

1 Department of Mathematics and Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 83 TatChee Avenue, Kowloon Tong, Hong Kong
2 Department of Mathematics, City University of Hong Kong, 83 TatChee Avenue, Kowloon Tong, Hong Kong
@article{CRMATH_2007__345_1_55_0,
     author = {Hui-Hui Dai and Fan-Fan Wang},
     title = {Corner instabilities in a slender nonlinearly elastic cylinder: analytical solutions and formation mechanism},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {55--58},
     publisher = {Elsevier},
     volume = {345},
     number = {1},
     year = {2007},
     doi = {10.1016/j.crma.2007.05.020},
     language = {en},
}
TY  - JOUR
AU  - Hui-Hui Dai
AU  - Fan-Fan Wang
TI  - Corner instabilities in a slender nonlinearly elastic cylinder: analytical solutions and formation mechanism
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 55
EP  - 58
VL  - 345
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2007.05.020
LA  - en
ID  - CRMATH_2007__345_1_55_0
ER  - 
%0 Journal Article
%A Hui-Hui Dai
%A Fan-Fan Wang
%T Corner instabilities in a slender nonlinearly elastic cylinder: analytical solutions and formation mechanism
%J Comptes Rendus. Mathématique
%D 2007
%P 55-58
%V 345
%N 1
%I Elsevier
%R 10.1016/j.crma.2007.05.020
%G en
%F CRMATH_2007__345_1_55_0
Hui-Hui Dai; Fan-Fan Wang. Corner instabilities in a slender nonlinearly elastic cylinder: analytical solutions and formation mechanism. Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 55-58. doi : 10.1016/j.crma.2007.05.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.020/

[1] S.S. Antman Nonlinear Problems of Elasticity, Springer, New York, 1995

[2] M.F. Beatty Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-with examples, Appl. Mech. Rev., Volume 40 (1987), pp. 1699-1734

[3] P.G. Ciarlet Mathematical Elasticity I: Three-Dimensional Elasticity, Elsevier, North-Holland, 1988

[4] H.-H. Dai Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods, Wave Motion, Volume 28 (1998), pp. 367-381

[5] H.-H. Dai; Z.X. Cai Phase transitions in a slender cylinder composed of an incompressible elastic material. I. Asymptotic model equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 462 (2006), pp. 75-95

[6] H.-H. Dai; X.J. Fan Asymptotically approximate model equations for weakly nonlinear long waves in compressible elastic rods and their comparisons with other simplified model equations, Math. Mech. Solids, Volume 9 (2004), pp. 61-79

[7] H.-H. Dai; Y. Huo Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, Proc. R. Soc. Lond. A, Volume 456 (2000), pp. 331-363

[8] H.-H. Dai; Y. Huo Asymptotically approximate model equations for nonlinear dispersive waves in incompressible elastic rods, Acta. Mech., Volume 157 (2002), pp. 97-112

[9] T.J. Healey; E.L. Montes-Pizatto Global bifurcation in nonlinear elasticity with an application to barrelling states of cylindrical columns, J. Elasticity, Volume 71 (2003), pp. 33-58

[10] T.J. Healey; H.C. Simpson Global continuation in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 143 (1998), pp. 1-28

Cited by Sources:

Comments - Policy