Comptes Rendus
Mathematical Physics
Local existence of classical solutions for the Einstein–Euler system using weighted Sobolev spaces of fractional order
Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 49-54.

We prove the existence of a class of local in time solutions, including static solutions, of the Einstein–Euler system. This result is the relativistic generalisation of a similar result for the Euler–Poisson system obtained by Gamblin (1993). As in his case the initial data of the density do not have compact support but fall off at infinity in an appropriate manner. An essential tool in our approach is the construction and use of weighted Sobolev spaces of fractional order. Moreover, these new spaces allow us to improve the regularity conditions for the solutions of evolution equations. The details of this construction, the properties of these spaces and results on elliptic and hyperbolic equations will be presented in a forthcoming article.

Nous prouvons l'existence d'une classe de solutions locales en temps, incluant des solutions statiques, du système d'Einstein–Euler. Notre résultat est la généralisation relativiste d'un résultat similaire pour le système d'Euler–Poisson obtenu par Gamblin (1993). Comme dans son cas, les données initiales de la densité ne sont pas à support compact mais décroissent à l'infini d'une façon appropriée. L'un des outils essentiels dans notre approche est la construction et l'usage des espaces de Sobolev à poids et d'ordre fractionnaire. De plus, ces nouveaux espaces nous permettent d'améliorer les conditions de régularité pour les solutions des équations d'évolution. Les détails de cette construction, les propriétés de ces espaces et quelques résultats sur des équations elliptiques et hyperboliques seront présentés dans un futur article.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.05.015

Uwe Brauer 1; Lavi Karp 2

1 Dept. Matemática Aplicada, Universidad Complutense, 28040 Madrid, Spain
2 Department of Mathematics, ORT Braude College, P.O. Box 78, Karmiel 21982, Israel
@article{CRMATH_2007__345_1_49_0,
     author = {Uwe Brauer and Lavi Karp},
     title = {Local existence of classical solutions for the {Einstein{\textendash}Euler} system using weighted {Sobolev} spaces of fractional order},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {49--54},
     publisher = {Elsevier},
     volume = {345},
     number = {1},
     year = {2007},
     doi = {10.1016/j.crma.2007.05.015},
     language = {en},
}
TY  - JOUR
AU  - Uwe Brauer
AU  - Lavi Karp
TI  - Local existence of classical solutions for the Einstein–Euler system using weighted Sobolev spaces of fractional order
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 49
EP  - 54
VL  - 345
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2007.05.015
LA  - en
ID  - CRMATH_2007__345_1_49_0
ER  - 
%0 Journal Article
%A Uwe Brauer
%A Lavi Karp
%T Local existence of classical solutions for the Einstein–Euler system using weighted Sobolev spaces of fractional order
%J Comptes Rendus. Mathématique
%D 2007
%P 49-54
%V 345
%N 1
%I Elsevier
%R 10.1016/j.crma.2007.05.015
%G en
%F CRMATH_2007__345_1_49_0
Uwe Brauer; Lavi Karp. Local existence of classical solutions for the Einstein–Euler system using weighted Sobolev spaces of fractional order. Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 49-54. doi : 10.1016/j.crma.2007.05.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.015/

[1] R. Bartnik Phase space for the Einstein equations, Comm. Anal. Geom., Volume 13 (2005) no. 5, pp. 845-885

[2] U. Brauer, L. Karp, Weighted Sobolev spaces of fractional order: properties and applications to elliptic, hyperbolic and Einstein's equations, in preparation

[3] P. Gamblin Solution réguliére á temps petit por l‘équation d'Euler–Poisson, Comm. Partial Differential Equations, Volume 18 (1993) no. 5 & 6, pp. 731-745

[4] D. Kateb On the boundedness of the mapping f|f|μ,μ>1 on Besov spaces, Math. Nachr., Volume 248 (2003) no. 249, pp. 110-128

[5] D. Maxwell Rough solutions of the Einstein constraint equations, J. Reine Angew. Math., Volume 590 (2006), pp. 1-29

[6] L. Nirenberg; H. Walker The null spaces of elliptic differential operators in Rn, J. Math. Anal. Appl., Volume 42 (1973), pp. 271-301

[7] A.D. Rendall The initial value problem for a class of general relativistic fluid bodies, J. Math. Phys., Volume 33 (1992) no. 2, pp. 1047-1053

[8] H. Triebel Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosis Barth, 1995

Cited by Sources:

Comments - Policy