We give a cocycle expansivity result for multimodal interval maps with non-flat critical points. It extends the Mañé hyperbolicity theorem to also describe orbits which pass near critical points.
On étend le théorème d'hyperbolicité de Mañé pour traiter des orbites qui passent par des voisinages critiques pour des applications multimodales de l'intervalle. On démontre que, pour des cocycles bien adaptés, ces applications sont dilatantes.
Accepted:
Published online:
Neil Dobbs 1
@article{CRMATH_2007__345_1_39_0, author = {Neil Dobbs}, title = {Expanding cocycles for interval maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {39--44}, publisher = {Elsevier}, volume = {345}, number = {1}, year = {2007}, doi = {10.1016/j.crma.2007.06.002}, language = {en}, }
Neil Dobbs. Expanding cocycles for interval maps. Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 39-44. doi : 10.1016/j.crma.2007.06.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.002/
[1] One-Dimensional Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Results in Mathematics and Related Areas (3), vol. 25, Springer-Verlag, Berlin, 1993
[2] Metric attractors for smooth unimodal maps, Ann. of Math., Volume 159 (2004) no. 2
[3] Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., Volume 100 (1985) no. 4, pp. 495-524
[4] Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc., Volume 17 (2004) no. 4, pp. 749-782 (electronic)
Cited by Sources:
Comments - Policy