Comptes Rendus
Probabilités
Quelques approximations du temps local brownien
[Some Brownian local time approximations]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 45-48.

We give some approximations of the local time process (Ltx)t0 at level x of the real Brownian motion (Xt). We prove that 2ϵ0tX(u+ϵ)t+1{Xu0}du+2ϵ0tX(u+ϵ)t1{Xu>0}du and 4ϵ0tXu1{X(u+ϵ)t>0}du converge in the ucp sense to Lt0, as ϵ0. We show that 1ϵ0t(1{x<Xs+ϵ}1{x<Xs})(Xs+ϵXs)ds goes to Ltx in L2(Ω) as ϵ0, and that the rate of convergence is of order ϵα, for any α<14.

On définit plusieurs approximations du processus des temps locaux (Ltx)t0 au niveau x du mouvement brownien réel (Xt). En particulier, on montre que 2ϵ0tX(u+ϵ)t+1{Xu0}du+2ϵ0tX(u+ϵ)t1{Xu>0}du et 4ϵ0tXu1{X(u+ϵ)t>0}du convergent au sens ucp vers Lt0, lorsque ϵ0. D'autre part, on montre que 1ϵ0t(1{x<Xs+ϵ}1{x<Xs})(Xs+ϵXs)ds converge vers Ltx dans L2(Ω) et que la vitesse de convergence est d'ordre ϵα, pour tout α<14.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.05.007

Blandine Bérard Bergery 1; Pierre Vallois 1

1 Université Henri-Poincaré, institut de mathématiques Elie-Cartan, B.P. 239, 54506 Vandœuvre-lès-Nancy cedex, France
@article{CRMATH_2007__345_1_45_0,
     author = {Blandine B\'erard Bergery and Pierre Vallois},
     title = {Quelques approximations du temps local brownien},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {45--48},
     publisher = {Elsevier},
     volume = {345},
     number = {1},
     year = {2007},
     doi = {10.1016/j.crma.2007.05.007},
     language = {fr},
}
TY  - JOUR
AU  - Blandine Bérard Bergery
AU  - Pierre Vallois
TI  - Quelques approximations du temps local brownien
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 45
EP  - 48
VL  - 345
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2007.05.007
LA  - fr
ID  - CRMATH_2007__345_1_45_0
ER  - 
%0 Journal Article
%A Blandine Bérard Bergery
%A Pierre Vallois
%T Quelques approximations du temps local brownien
%J Comptes Rendus. Mathématique
%D 2007
%P 45-48
%V 345
%N 1
%I Elsevier
%R 10.1016/j.crma.2007.05.007
%G fr
%F CRMATH_2007__345_1_45_0
Blandine Bérard Bergery; Pierre Vallois. Quelques approximations du temps local brownien. Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 45-48. doi : 10.1016/j.crma.2007.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.007/

[1] K. Itô; H.P. McKean Diffusion Processes and their Sample Paths, Die Grundlehren der Mathematischen Wissenschaften, Band 125, Springer-Verlag, Berlin, 1974

[2] E. Mordecki; M. Wschebor Approximation of the occupation measure of Lévy processes, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 8, pp. 605-610

[3] P.E. Protter Stochastic Integration and Differential Equations, Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 2004

[4] D. Revuz; M. Yor Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 293, Springer-Verlag, Berlin, 1999

[5] F. Russo; P. Vallois The generalized covariation process and Itô formula, Stochastic Process. Appl., Volume 59 (1995) no. 1, pp. 81-104

[6] F. Russo; P. Vallois Itô formula for C1-functions of semimartingales, Probab. Theory Related Fields, Volume 104 (1996) no. 1, pp. 27-41

[7] F. Russo; P. Vallois Stochastic calculus with respect to continuous finite quadratic variation processes, Stochastics Stochastics Rep., Volume 70 (2000) no. 1–2, pp. 1-40

[8] F. Russo; P. Vallois Elements of stochastic calculus via regularisation, Séminaire de Probabilités, XXXX, Lecture Notes in Math., Springer, Berlin, 2006

Cited by Sources:

Comments - Policy