We give some approximations of the local time process at level x of the real Brownian motion . We prove that and converge in the ucp sense to , as . We show that goes to in as , and that the rate of convergence is of order , for any .
On définit plusieurs approximations du processus des temps locaux au niveau x du mouvement brownien réel . En particulier, on montre que et convergent au sens ucp vers , lorsque . D'autre part, on montre que converge vers dans et que la vitesse de convergence est d'ordre , pour tout .
Accepted:
Published online:
Blandine Bérard Bergery 1; Pierre Vallois 1
@article{CRMATH_2007__345_1_45_0, author = {Blandine B\'erard Bergery and Pierre Vallois}, title = {Quelques approximations du temps local brownien}, journal = {Comptes Rendus. Math\'ematique}, pages = {45--48}, publisher = {Elsevier}, volume = {345}, number = {1}, year = {2007}, doi = {10.1016/j.crma.2007.05.007}, language = {fr}, }
Blandine Bérard Bergery; Pierre Vallois. Quelques approximations du temps local brownien. Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 45-48. doi : 10.1016/j.crma.2007.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.007/
[1] Diffusion Processes and their Sample Paths, Die Grundlehren der Mathematischen Wissenschaften, Band 125, Springer-Verlag, Berlin, 1974
[2] Approximation of the occupation measure of Lévy processes, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 8, pp. 605-610
[3] Stochastic Integration and Differential Equations, Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 2004
[4] Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 293, Springer-Verlag, Berlin, 1999
[5] The generalized covariation process and Itô formula, Stochastic Process. Appl., Volume 59 (1995) no. 1, pp. 81-104
[6] Itô formula for -functions of semimartingales, Probab. Theory Related Fields, Volume 104 (1996) no. 1, pp. 27-41
[7] Stochastic calculus with respect to continuous finite quadratic variation processes, Stochastics Stochastics Rep., Volume 70 (2000) no. 1–2, pp. 1-40
[8] Elements of stochastic calculus via regularisation, Séminaire de Probabilités, XXXX, Lecture Notes in Math., Springer, Berlin, 2006
Cited by Sources:
Comments - Policy