Multiconfiguration methods are a natural generalization of well-known simple models for approximating the linear N body Schrödinger equation for atomic and molecular systems with binary (Coulomb) interactions, like the Hartree and the Hartree–Fock theories. This Note discusses the case of the multiconfiguration time-dependent Hartree–Fock (MCTDHF in short) method which consists in approximating the high-dimensional wavefunction by a time-dependent linear combination of Slater determinants. We formulate the system of equations of motion and we establish the well-posedness of this system in a convenient Hilbert space framework, at least as long as the associated one-particle density matrix keeps the same rank. Our proof covers and simplifies previous well-posedness results of the Cauchy problems associated to the time-dependent Hartree and the time-dependent Hartree–Fock approximations obtained elsewhere.
Les méthodes de multi-configurations améliorent des modèles simples d'approximation bien connus de l'équation de Schrödinger linéaire à N corps pour les systèmes moléculaires sous interactions Coulombiennes, tels que les modèles de Hartree et de Hartree–Fock. Dans cette Note, nous étudions le cas de la méthode dite de Multiconfigurations Hartree–Fock dépendante du temps, qui consiste à approcher les fonctions d'onde antisymétriques d'un espace de Hilbert de dimension infinie par une combinaison linéaire dépendante du temps de déterminants de Slater. Nous écrivons le système d'équations d'évolution et nous établissons que ce système est bien posé dans un cadre fonctionnel adéquat, et ceci tant que la matrice densité associée ne change pas de rang. Notre preuve recouvre et simplifie les résultats d'existence et unicité de solutions des problèmes de Cauchy associés aux approximations de Hartree et de Hartree–Fock obtenus ailleurs.
Accepted:
Published online:
Saber Trabelsi 1, 2
@article{CRMATH_2007__345_3_145_0, author = {Saber Trabelsi}, title = {Solutions of the multiconfiguration time-dependent {Hartree{\textendash}Fock} equations with {Coulomb} interactions}, journal = {Comptes Rendus. Math\'ematique}, pages = {145--150}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.06.005}, language = {en}, }
TY - JOUR AU - Saber Trabelsi TI - Solutions of the multiconfiguration time-dependent Hartree–Fock equations with Coulomb interactions JO - Comptes Rendus. Mathématique PY - 2007 SP - 145 EP - 150 VL - 345 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2007.06.005 LA - en ID - CRMATH_2007__345_3_145_0 ER -
Saber Trabelsi. Solutions of the multiconfiguration time-dependent Hartree–Fock equations with Coulomb interactions. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 145-150. doi : 10.1016/j.crma.2007.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.005/
[1] C. Bardos, I. Catto, N.J. Mauser, S. Trabelsi, Analysis of the multi configuration time dependent Hartree Fock equations, submitted for publication
[2] The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagation wavepackets, Phys. Rep., Volume 324 (2000), pp. 1-105
[3] An existence proof for the Hartree–Fock time-dependent problem with bounded two-body interaction, Comm. Math. Phys., Volume 37 (1974), pp. 183-191
[4] On the Hartree–Fock time-dependent problem, Comm. Math. Phys., Volume 49 (1976), pp. 25-33
[5] On the time-dependent Hartre–Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci., Volume 9 (1999), pp. 963-990
[6] The time-dependent Hartree–Fock equations with Coulomb two-body interaction, Comm. Math. Phys., Volume 46 (1976), pp. 99-104
[7] Global existence of solutions to the Cauchy problem for the time-dependent Hartree equation, J. Math. Phys., Volume 16 (1975), pp. 1122-1230
[8] The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions, Arch. Rational Mech. Anal., Volume 169 (2003), pp. 35-71
[9] O. Koch, C. Lubich, Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics, submitted for publication
[10] Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rational Mech. Anal., Volume 171 (2004) no. 1, pp. 83-114
[11] Quantum theory of many-particles systems, I: Physical interpretations by mean of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction, Phys. Rev., Volume 97 (1955), pp. 1474-1489
[12] Non-linear semi-groups, Ann. Math., Volume 78 (1963), pp. 339-364
Cited by Sources:
Comments - Policy