Comptes Rendus
Partial Differential Equations
Solutions of the multiconfiguration time-dependent Hartree–Fock equations with Coulomb interactions
Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 145-150.

Multiconfiguration methods are a natural generalization of well-known simple models for approximating the linear N body Schrödinger equation for atomic and molecular systems with binary (Coulomb) interactions, like the Hartree and the Hartree–Fock theories. This Note discusses the case of the multiconfiguration time-dependent Hartree–Fock (MCTDHF in short) method which consists in approximating the high-dimensional wavefunction by a time-dependent linear combination of Slater determinants. We formulate the system of equations of motion and we establish the well-posedness of this system in a convenient Hilbert space framework, at least as long as the associated one-particle density matrix keeps the same rank. Our proof covers and simplifies previous well-posedness results of the Cauchy problems associated to the time-dependent Hartree and the time-dependent Hartree–Fock approximations obtained elsewhere.

Les méthodes de multi-configurations améliorent des modèles simples d'approximation bien connus de l'équation de Schrödinger linéaire à N corps pour les systèmes moléculaires sous interactions Coulombiennes, tels que les modèles de Hartree et de Hartree–Fock. Dans cette Note, nous étudions le cas de la méthode dite de Multiconfigurations Hartree–Fock dépendante du temps, qui consiste à approcher les fonctions d'onde antisymétriques d'un espace de Hilbert de dimension infinie par une combinaison linéaire dépendante du temps de déterminants de Slater. Nous écrivons le système d'équations d'évolution et nous établissons que ce système est bien posé dans un cadre fonctionnel adéquat, et ceci tant que la matrice densité associée ne change pas de rang. Notre preuve recouvre et simplifie les résultats d'existence et unicité de solutions des problèmes de Cauchy associés aux approximations de Hartree et de Hartree–Fock obtenus ailleurs.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.06.005

Saber Trabelsi 1, 2

1 WPI, Fak. f. Mathematik, Univ. Wien – UZA 4, Nordbergstrasse 15, A-1090 Wien, Austria
2 Laboratoire J.-L. Lions, universié Pierre et Marie Curie, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2007__345_3_145_0,
     author = {Saber Trabelsi},
     title = {Solutions of the multiconfiguration time-dependent {Hartree{\textendash}Fock} equations with {Coulomb} interactions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {145--150},
     publisher = {Elsevier},
     volume = {345},
     number = {3},
     year = {2007},
     doi = {10.1016/j.crma.2007.06.005},
     language = {en},
}
TY  - JOUR
AU  - Saber Trabelsi
TI  - Solutions of the multiconfiguration time-dependent Hartree–Fock equations with Coulomb interactions
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 145
EP  - 150
VL  - 345
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2007.06.005
LA  - en
ID  - CRMATH_2007__345_3_145_0
ER  - 
%0 Journal Article
%A Saber Trabelsi
%T Solutions of the multiconfiguration time-dependent Hartree–Fock equations with Coulomb interactions
%J Comptes Rendus. Mathématique
%D 2007
%P 145-150
%V 345
%N 3
%I Elsevier
%R 10.1016/j.crma.2007.06.005
%G en
%F CRMATH_2007__345_3_145_0
Saber Trabelsi. Solutions of the multiconfiguration time-dependent Hartree–Fock equations with Coulomb interactions. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 145-150. doi : 10.1016/j.crma.2007.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.005/

[1] C. Bardos, I. Catto, N.J. Mauser, S. Trabelsi, Analysis of the multi configuration time dependent Hartree Fock equations, submitted for publication

[2] M.H. Beck; A. Jäckle; G.A. Worth; H.-D. Meyer The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagation wavepackets, Phys. Rep., Volume 324 (2000), pp. 1-105

[3] A. Bove; G. Da Prato; G. Fano An existence proof for the Hartree–Fock time-dependent problem with bounded two-body interaction, Comm. Math. Phys., Volume 37 (1974), pp. 183-191

[4] A. Bove; G. Da Prato; G. Fano On the Hartree–Fock time-dependent problem, Comm. Math. Phys., Volume 49 (1976), pp. 25-33

[5] E. Cancès; C. Le Bris On the time-dependent Hartre–Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci., Volume 9 (1999), pp. 963-990

[6] J.M. Chadam The time-dependent Hartree–Fock equations with Coulomb two-body interaction, Comm. Math. Phys., Volume 46 (1976), pp. 99-104

[7] J.M. Chadam; R.T. Glassey Global existence of solutions to the Cauchy problem for the time-dependent Hartree equation, J. Math. Phys., Volume 16 (1975), pp. 1122-1230

[8] G. Friesecke The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions, Arch. Rational Mech. Anal., Volume 169 (2003), pp. 35-71

[9] O. Koch, C. Lubich, Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics, submitted for publication

[10] M. Lewin Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rational Mech. Anal., Volume 171 (2004) no. 1, pp. 83-114

[11] P.O. Löwdin Quantum theory of many-particles systems, I: Physical interpretations by mean of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction, Phys. Rev., Volume 97 (1955), pp. 1474-1489

[12] I. Segal Non-linear semi-groups, Ann. Math., Volume 78 (1963), pp. 339-364

Cited by Sources:

Comments - Policy