We compute bifunctor cohomology for matrix polynomials under conjugation and detect candidates for universal cohomology classes in higher invariant theory.
Nous calculons la cohomologie de bifoncteur des polynômes de matrices sous l'action de conjugaison et détectons des candidats pour des classes cohomologiques universelles en théorie des invariants supérieurs.
Accepted:
Published online:
Antoine Touzé 1
@article{CRMATH_2007__345_4_193_0, author = {Antoine Touz\'e}, title = {Cohomologie du groupe lin\'eaire \`a coefficients dans les polyn\^omes de matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {193--198}, publisher = {Elsevier}, volume = {345}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2007.06.024}, language = {fr}, }
Antoine Touzé. Cohomologie du groupe linéaire à coefficients dans les polynômes de matrices. Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 193-198. doi : 10.1016/j.crma.2007.06.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.024/
[1] Schur functors and Schur complexes, Adv. in Math., Volume 44 (1982) no. 3, pp. 207-278
[2] Extensions of strict polynomial functors, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 5, pp. 773-792
[3] On and related homology groups, Trans. Amer. Math. Soc., Volume 270 (1982), pp. 1-46
[4] Cohomology of bifunctors (Proc. London Math. Soc., à paraître) | arXiv
[5] General linear and functor cohomology over finite fields, Ann. of Math., Volume 150 (1999) no. 2, pp. 663-728
[6] Cohomology of finite group scheme over a field, Invent. Math., Volume 127 (1997), pp. 235-253
[7] Infinitesimal 1-parameter subgroups and cohomology, J. Amer. Math. Soc., Volume 10 (1997) no. 3, pp. 693-728
[8] Cohomology with Grosshans graded coefficients. Invariant theory in all characteristics, CRM Proc. Lecture Notes, vol. 35, Amer. Math. Soc., Providence, RI, 2004, pp. 127-138
Cited by Sources:
Comments - Policy