We study the deformation theory aspects of Matricial Factorizations, possibly with an orthogonal or symplectic structure. We discuss and extend the Knörrer and Hori–Walcher periodicity theorems.
Nous étudions la théorie des déformations des Factorisations Matricielles, éventuellement munies d'une structure orthogonale ou symplectique. Nous discutons et généralisons dans différents contextes les théorèmes de périodicité de Knörrer et Hori–Walcher.
Accepted:
Published online:
José Bertin 1; Fabrice Rosay 1
@article{CRMATH_2007__345_4_187_0, author = {Jos\'e Bertin and Fabrice Rosay}, title = {P\'eriodicit\'e de {Kn\"orrer} \'etendue}, journal = {Comptes Rendus. Math\'ematique}, pages = {187--191}, publisher = {Elsevier}, volume = {345}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2007.06.026}, language = {fr}, }
José Bertin; Fabrice Rosay. Périodicité de Knörrer étendue. Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 187-191. doi : 10.1016/j.crma.2007.06.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.026/
[1] J. Bertin, Clifford algebras and matrix factorizations, in: ICCA7, Toulouse, June 2005, proceedings, Birkhäuser, in press
[2] Moduli stacks for bundles on semistable curves, Math. Ann., Volume 304 (1996), pp. 489-515
[3] D-branes from matrix factorizations, talk at strings 04 (Paris) | arXiv
[4] D-branes categories for orientifolds – The Landau–Ginzburg case | arXiv
[5] Cohen–Macaulay modules on hypersurfaces singularities I, Invent. Math., Volume 88 (1987), pp. 153-164
[6] Matrix factorizations and link homology | arXiv
[7] Triangulated categories of singularities, D-branes in Landau–Ginzburg models | arXiv
Cited by Sources:
Comments - Policy