[Estimations de Strichartz dans un cas limite pour l'équation de transport cinétique unidimensionnelle]
Dans cette Note on étudie des problèmes d'estimations de Strichartz dans un cas limite pour l'équation cinétique. Dans le cas de la dimension un, le résultat fondamental du Théorème 1 est démontré par deux méthodes : dans la première on construit un contrexemple explicite, dans le seconde on utilise un argument de dualité.
In this Note, we consider problems of endpoint Strichartz estimates for the kinetic equation in one dimension. The fundamental result obtained in Theorem 1 is proved using two different methods: in the first we construct an explicit counterexample; in the second uses a duality argument.
Accepté le :
Publié le :
Zihua Guo 1 ; Lizhong Peng 1
@article{CRMATH_2007__345_5_253_0, author = {Zihua Guo and Lizhong Peng}, title = {Endpoint {Strichartz} estimate for the kinetic transport equation in one dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {253--256}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.002}, language = {en}, }
Zihua Guo; Lizhong Peng. Endpoint Strichartz estimate for the kinetic transport equation in one dimension. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 253-256. doi : 10.1016/j.crma.2007.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.002/
[1] Estimations de Strichartz pour les èquations de transport cinétique, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (1996), pp. 535-540
[2] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980
[3] Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equation, Duke Math. J., Volume 91 (1998), pp. 393-408
[4] Singular Integrals and Differentiability of Functions, Princeton University Press, 1970
- Strichartz estimates for orthonormal families of initial data and weighted oscillatory integral estimates, Forum of Mathematics, Sigma, Volume 9 (2021) | DOI:10.1017/fms.2020.64
- On the Strichartz estimates for orthonormal systems of initial data with regularity, Advances in Mathematics, Volume 354 (2019), p. 106736 | DOI:10.1016/j.aim.2019.106736
- The orthonormal Strichartz inequality on torus, Transactions of the American Mathematical Society, Volume 373 (2019) no. 2, p. 1455 | DOI:10.1090/tran/7982
- Sharpness of the Brascamp–Lieb inequality in Lorentz spaces, Electronic Research Announcements in Mathematical Sciences, Volume 24 (2017) no. 0, p. 53 | DOI:10.3934/era.2017.24.006
- On the Strichartz Estimates for the Kinetic Transport Equation, Communications in Partial Differential Equations, Volume 39 (2014) no. 10, p. 1821 | DOI:10.1080/03605302.2013.850880
- Counterexamples to Strichartz estimates for the kinetic transport equation based on Besicovitch sets, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 7, p. 2515 | DOI:10.1016/j.na.2010.12.007
- Strichartz Estimates for the Kinetic Transport Equation, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 3, p. 1282 | DOI:10.1137/100803808
Cité par 7 documents. Sources : Crossref
⁎ Research supported by NNSF of China No.10471002, RFDP of China No: 20060001010.
Commentaires - Politique