In this Note, the global existence of strong solutions of the primitive equations for the ocean in space dimension 3 with the Dirichlet boundary condition is obtained. The method of the proof can be easily adapted to treat full primitive equations in a domain with a varying bottom topography.
Dans cette Note, on établie l'existence globale des solutions fortes des équations primitives de l'océan en dimension 3 pour des conditions aux limites de type Dirichlet. La méthode de démonstration s'adapte aisément au cas des équations primitives générales dans un domaine avec un fond de topographie variable.
Accepted:
Published online:
Igor Kukavica 1; Mohammed Ziane 1
@article{CRMATH_2007__345_5_257_0, author = {Igor Kukavica and Mohammed Ziane}, title = {The regularity of solutions of the primitive equations of the ocean in space dimension three}, journal = {Comptes Rendus. Math\'ematique}, pages = {257--260}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.025}, language = {en}, }
TY - JOUR AU - Igor Kukavica AU - Mohammed Ziane TI - The regularity of solutions of the primitive equations of the ocean in space dimension three JO - Comptes Rendus. Mathématique PY - 2007 SP - 257 EP - 260 VL - 345 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2007.07.025 LA - en ID - CRMATH_2007__345_5_257_0 ER -
Igor Kukavica; Mohammed Ziane. The regularity of solutions of the primitive equations of the ocean in space dimension three. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 257-260. doi : 10.1016/j.crma.2007.07.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.025/
[1] C. Cao, E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., in press
[2] Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, Volume 14 (2001), pp. 1381-1408
[3] Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 283-286
[4] I. Kukavica, M. Ziane, On the regularity of the primitive equations of the ocean, preprint
[5] New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, Volume 5 (1992), pp. 237-288
[6] On the equations of the large-scale ocean, Nonlinearity, Volume 5 (1992), pp. 1007-1053
[7] Mathematical study of the coupled models of atmosphere and ocean (CAO III), J. Math. Pures Appl., Volume 74 (1995), pp. 105-163
[8] Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987
[9] On the regularity of the pressure of weak solutions of Navier–Stokes equations, Arch. Math., Volume 46 (1986), pp. 1-15
[10] Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, vol. III, North-Holland, Amsterdam, 2004, pp. 535-657
[11] An Introduction to Three Dimensional Climate Modeling, Oxford University Press, Oxford, 1986
Cited by Sources:
Comments - Policy