[La régularité des solutions des équations primitives de l'océan en dimension trois]
Dans cette Note, on établie l'existence globale des solutions fortes des équations primitives de l'océan en dimension 3 pour des conditions aux limites de type Dirichlet. La méthode de démonstration s'adapte aisément au cas des équations primitives générales dans un domaine avec un fond de topographie variable.
In this Note, the global existence of strong solutions of the primitive equations for the ocean in space dimension 3 with the Dirichlet boundary condition is obtained. The method of the proof can be easily adapted to treat full primitive equations in a domain with a varying bottom topography.
Accepté le :
Publié le :
Igor Kukavica 1 ; Mohammed Ziane 1
@article{CRMATH_2007__345_5_257_0, author = {Igor Kukavica and Mohammed Ziane}, title = {The regularity of solutions of the primitive equations of the ocean in space dimension three}, journal = {Comptes Rendus. Math\'ematique}, pages = {257--260}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.025}, language = {en}, }
TY - JOUR AU - Igor Kukavica AU - Mohammed Ziane TI - The regularity of solutions of the primitive equations of the ocean in space dimension three JO - Comptes Rendus. Mathématique PY - 2007 SP - 257 EP - 260 VL - 345 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2007.07.025 LA - en ID - CRMATH_2007__345_5_257_0 ER -
Igor Kukavica; Mohammed Ziane. The regularity of solutions of the primitive equations of the ocean in space dimension three. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 257-260. doi : 10.1016/j.crma.2007.07.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.025/
[1] C. Cao, E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., in press
[2] Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, Volume 14 (2001), pp. 1381-1408
[3] Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 283-286
[4] I. Kukavica, M. Ziane, On the regularity of the primitive equations of the ocean, preprint
[5] New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, Volume 5 (1992), pp. 237-288
[6] On the equations of the large-scale ocean, Nonlinearity, Volume 5 (1992), pp. 1007-1053
[7] Mathematical study of the coupled models of atmosphere and ocean (CAO III), J. Math. Pures Appl., Volume 74 (1995), pp. 105-163
[8] Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987
[9] On the regularity of the pressure of weak solutions of Navier–Stokes equations, Arch. Math., Volume 46 (1986), pp. 1-15
[10] Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, vol. III, North-Holland, Amsterdam, 2004, pp. 535-657
[11] An Introduction to Three Dimensional Climate Modeling, Oxford University Press, Oxford, 1986
Cité par Sources :
Commentaires - Politique