Comptes Rendus
Partial Differential Equations/Mathematical Problems in Mechanics
The regularity of solutions of the primitive equations of the ocean in space dimension three
Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 257-260.

In this Note, the global existence of strong solutions of the primitive equations for the ocean in space dimension 3 with the Dirichlet boundary condition is obtained. The method of the proof can be easily adapted to treat full primitive equations in a domain with a varying bottom topography.

Dans cette Note, on établie l'existence globale des solutions fortes des équations primitives de l'océan en dimension 3 pour des conditions aux limites de type Dirichlet. La méthode de démonstration s'adapte aisément au cas des équations primitives générales dans un domaine avec un fond de topographie variable.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.07.025

Igor Kukavica 1; Mohammed Ziane 1

1 Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA
@article{CRMATH_2007__345_5_257_0,
     author = {Igor Kukavica and Mohammed Ziane},
     title = {The regularity of solutions of the primitive equations of the ocean in space dimension three},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {257--260},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.025},
     language = {en},
}
TY  - JOUR
AU  - Igor Kukavica
AU  - Mohammed Ziane
TI  - The regularity of solutions of the primitive equations of the ocean in space dimension three
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 257
EP  - 260
VL  - 345
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.025
LA  - en
ID  - CRMATH_2007__345_5_257_0
ER  - 
%0 Journal Article
%A Igor Kukavica
%A Mohammed Ziane
%T The regularity of solutions of the primitive equations of the ocean in space dimension three
%J Comptes Rendus. Mathématique
%D 2007
%P 257-260
%V 345
%N 5
%I Elsevier
%R 10.1016/j.crma.2007.07.025
%G en
%F CRMATH_2007__345_5_257_0
Igor Kukavica; Mohammed Ziane. The regularity of solutions of the primitive equations of the ocean in space dimension three. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 257-260. doi : 10.1016/j.crma.2007.07.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.025/

[1] C. Cao, E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., in press

[2] F. Guillén-González; N. Masmoudi; M.A. Rodríguez-Bellido Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, Volume 14 (2001), pp. 1381-1408

[3] G. Kobelkov Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 283-286

[4] I. Kukavica, M. Ziane, On the regularity of the primitive equations of the ocean, preprint

[5] J.-L. Lions; R. Temam; S. Wang New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, Volume 5 (1992), pp. 237-288

[6] J.-L. Lions; R. Temam; S. Wang On the equations of the large-scale ocean, Nonlinearity, Volume 5 (1992), pp. 1007-1053

[7] J.-L. Lions; R. Temam; S. Wang Mathematical study of the coupled models of atmosphere and ocean (CAO III), J. Math. Pures Appl., Volume 74 (1995), pp. 105-163

[8] J. Pedlosky Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987

[9] H. Sohr; W. von Wahl On the regularity of the pressure of weak solutions of Navier–Stokes equations, Arch. Math., Volume 46 (1986), pp. 1-15

[10] R. Temam; M. Ziane Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, vol. III, North-Holland, Amsterdam, 2004, pp. 535-657

[11] W.M. Washington; C.L. Parkinson An Introduction to Three Dimensional Climate Modeling, Oxford University Press, Oxford, 1986

Cited by Sources:

Comments - Policy