In this Note, we consider problems of endpoint Strichartz estimates for the kinetic equation in one dimension. The fundamental result obtained in Theorem 1 is proved using two different methods: in the first we construct an explicit counterexample; in the second uses a duality argument.
Dans cette Note on étudie des problèmes d'estimations de Strichartz dans un cas limite pour l'équation cinétique. Dans le cas de la dimension un, le résultat fondamental du Théorème 1 est démontré par deux méthodes : dans la première on construit un contrexemple explicite, dans le seconde on utilise un argument de dualité.
Accepted:
Published online:
Zihua Guo 1; Lizhong Peng 1
@article{CRMATH_2007__345_5_253_0, author = {Zihua Guo and Lizhong Peng}, title = {Endpoint {Strichartz} estimate for the kinetic transport equation in one dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {253--256}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.002}, language = {en}, }
Zihua Guo; Lizhong Peng. Endpoint Strichartz estimate for the kinetic transport equation in one dimension. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 253-256. doi : 10.1016/j.crma.2007.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.002/
[1] Estimations de Strichartz pour les èquations de transport cinétique, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (1996), pp. 535-540
[2] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980
[3] Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equation, Duke Math. J., Volume 91 (1998), pp. 393-408
[4] Singular Integrals and Differentiability of Functions, Princeton University Press, 1970
Cited by Sources:
⁎ Research supported by NNSF of China No.10471002, RFDP of China No: 20060001010.
Comments - Policy