Comptes Rendus
Partial Differential Equations
Endpoint Strichartz estimate for the kinetic transport equation in one dimension
Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 253-256.

In this Note, we consider problems of endpoint Strichartz estimates for the kinetic equation in one dimension. The fundamental result obtained in Theorem 1 is proved using two different methods: in the first we construct an explicit counterexample; in the second uses a duality argument.

Dans cette Note on étudie des problèmes d'estimations de Strichartz dans un cas limite pour l'équation cinétique. Dans le cas de la dimension un, le résultat fondamental du Théorème 1 est démontré par deux méthodes : dans la première on construit un contrexemple explicite, dans le seconde on utilise un argument de dualité.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.07.002

Zihua Guo 1; Lizhong Peng 1

1 LMAM, School of Mathematical Sciences, Changchun Yuan, Peking University, Beijing 100871, China
@article{CRMATH_2007__345_5_253_0,
     author = {Zihua Guo and Lizhong Peng},
     title = {Endpoint {Strichartz} estimate for the kinetic transport equation in one dimension},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {253--256},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.002},
     language = {en},
}
TY  - JOUR
AU  - Zihua Guo
AU  - Lizhong Peng
TI  - Endpoint Strichartz estimate for the kinetic transport equation in one dimension
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 253
EP  - 256
VL  - 345
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.002
LA  - en
ID  - CRMATH_2007__345_5_253_0
ER  - 
%0 Journal Article
%A Zihua Guo
%A Lizhong Peng
%T Endpoint Strichartz estimate for the kinetic transport equation in one dimension
%J Comptes Rendus. Mathématique
%D 2007
%P 253-256
%V 345
%N 5
%I Elsevier
%R 10.1016/j.crma.2007.07.002
%G en
%F CRMATH_2007__345_5_253_0
Zihua Guo; Lizhong Peng. Endpoint Strichartz estimate for the kinetic transport equation in one dimension. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 253-256. doi : 10.1016/j.crma.2007.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.002/

[1] F. Castella; B. Perthame Estimations de Strichartz pour les èquations de transport cinétique, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (1996), pp. 535-540

[2] M. Keel; T. Tao Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980

[3] S.J. Montgomery-Smith Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equation, Duke Math. J., Volume 91 (1998), pp. 393-408

[4] E.M. Stein Singular Integrals and Differentiability of Functions, Princeton University Press, 1970

Cited by Sources:

Research supported by NNSF of China No.10471002, RFDP of China No: 20060001010.

Comments - Policy