[Solutions périodiques de haute fréquence d'équations semi-linéaires]
On s'intéresse aux solutions positives de dans , c'est-à-dire aux solutions périodiques en , la première coordonnée. Le cas modèle est , . Nous prouvons que, pour ε suffisamment grand, toute solution positive est une fonction de seulement.
We are interested with positive solutions of in , i.e. periodic solutions in the first coordinate . The model function for f is , . We prove that for ε large enough, any positive solution is a function of the second coordinate only.
Accepté le :
Publié le :
Geneviève Allain 1 ; Anne Beaulieu 2
@article{CRMATH_2007__345_7_381_0, author = {Genevi\`eve Allain and Anne Beaulieu}, title = {High frequency periodic solutions of semilinear equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {381--384}, publisher = {Elsevier}, volume = {345}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.07.010}, language = {en}, }
Geneviève Allain; Anne Beaulieu. High frequency periodic solutions of semilinear equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 381-384. doi : 10.1016/j.crma.2007.07.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.010/
[1] On a long-standing conjecture of E. De Giorgi: old and recent results, Acta Appl. Math., Volume 65 (2001), pp. 9-33
[2] A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 19 (2002) no. 3, pp. 313-342
[3] One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., Volume 103 (2000) no. 3, pp. 375-396
[4] On the method of moving plane and the sliding method, Bol. Soc. Bras. Mat., Volume 22 (1991), pp. 1-39
[5] New solutions of equations on , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume XXX (2001), pp. 535-563
[6] On a conjecture of De Giorgi and some related problems, Math. Ann., Volume 311 (1998), pp. 481-491
[7] Symmetry of positive solutions of nonlinear elliptic equations in , Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Studies, vol. 7A, Academic Press, New York, 1981, pp. 369-402
[8] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983
[9] Uniqueness of the positive solution of in an annulus, Differential Integral Equations, Volume 4 (1991), pp. 583-599
Cité par Sources :
Commentaires - Politique