Comptes Rendus
Partial Differential Equations
High frequency periodic solutions of semilinear equations
[Solutions périodiques de haute fréquence d'équations semi-linéaires]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 381-384.

On s'intéresse aux solutions positives de ε2Δu+f(u)=0 dans S1×R, c'est-à-dire aux solutions périodiques en x1, la première coordonnée. Le cas modèle est f(u)=uup, p>1. Nous prouvons que, pour ε suffisamment grand, toute solution positive est une fonction de x2 seulement.

We are interested with positive solutions of ε2Δu+f(u)=0 in S1×R, i.e. periodic solutions in the first coordinate x1. The model function for f is f(u)=uup, p>1. We prove that for ε large enough, any positive solution is a function of the second coordinate only.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.07.010

Geneviève Allain 1 ; Anne Beaulieu 2

1 Laboratoire d'analyse et de mathématiques appliquées, Université Paris-Est, UMR CNRS 8050, Faculté de sciences et technologie, 61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France
2 Laboratoire d'analyse et de mathématiques appliquées, Université Paris-Est, UMR CNRS 8050, 5, boulevard Descartes, 77454 Marne-la-Vallée cedex 2, France
@article{CRMATH_2007__345_7_381_0,
     author = {Genevi\`eve Allain and Anne Beaulieu},
     title = {High frequency periodic solutions of semilinear equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {381--384},
     publisher = {Elsevier},
     volume = {345},
     number = {7},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.010},
     language = {en},
}
TY  - JOUR
AU  - Geneviève Allain
AU  - Anne Beaulieu
TI  - High frequency periodic solutions of semilinear equations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 381
EP  - 384
VL  - 345
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.010
LA  - en
ID  - CRMATH_2007__345_7_381_0
ER  - 
%0 Journal Article
%A Geneviève Allain
%A Anne Beaulieu
%T High frequency periodic solutions of semilinear equations
%J Comptes Rendus. Mathématique
%D 2007
%P 381-384
%V 345
%N 7
%I Elsevier
%R 10.1016/j.crma.2007.07.010
%G en
%F CRMATH_2007__345_7_381_0
Geneviève Allain; Anne Beaulieu. High frequency periodic solutions of semilinear equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 381-384. doi : 10.1016/j.crma.2007.07.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.010/

[1] G. Alberti; L. Ambrosio; X. Cabré On a long-standing conjecture of E. De Giorgi: old and recent results, Acta Appl. Math., Volume 65 (2001), pp. 9-33

[2] L. Almeida; L. Damascelli; Y. Ge A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 19 (2002) no. 3, pp. 313-342

[3] H. Berestycki; F. Hamel; R. Monneau One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., Volume 103 (2000) no. 3, pp. 375-396

[4] H. Berestycki; L. Nirenberg On the method of moving plane and the sliding method, Bol. Soc. Bras. Mat., Volume 22 (1991), pp. 1-39

[5] E.N. Dancer New solutions of equations on Rn, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume XXX (2001), pp. 535-563

[6] N. Ghoussoub; C. Gui On a conjecture of De Giorgi and some related problems, Math. Ann., Volume 311 (1998), pp. 481-491

[7] B. Gidas; W.M. Ni; L. Nirenberg Symmetry of positive solutions of nonlinear elliptic equations in Rn, Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Studies, vol. 7A, Academic Press, New York, 1981, pp. 369-402

[8] D. Gilbarg; N. Trudinger Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983

[9] M.K. Kwong; L. Zhang Uniqueness of the positive solution of Δu+f(u)=0 in an annulus, Differential Integral Equations, Volume 4 (1991), pp. 583-599

Cité par Sources :

Commentaires - Politique