In this Note, we define the Littlewood–Paley and Lusin functions associated with the sub-Laplacian operator on stratified groups. The () boundedness of Littlewood–Paley and Lusin functions are proved.
Dans cette Note, nous définissons les fonctions de Littlewood–Paley et de Lusin sur les groupes stratifiés. Nous prouvons que pour , elles sont bornées sur .
Accepted:
Published online:
Jiman Zhao 1
@article{CRMATH_2007__345_7_377_0, author = {Jiman Zhao}, title = {Littlewood{\textendash}Paley and {Lusin} functions on stratified groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {377--380}, publisher = {Elsevier}, volume = {345}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.09.007}, language = {en}, }
Jiman Zhao. Littlewood–Paley and Lusin functions on stratified groups. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 377-380. doi : 10.1016/j.crma.2007.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.007/
[1] J.C. Chen, Heat kernels on positively curved manifolds and applications, Ph.D. thesis, Hangzhou Univ., 1987
[2] Littlewood−Paley−Stein functions on complete Riemannian manifolds for , Studia Math., Volume 154 (2003) no. 1, pp. 37-57
[3] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Math., Volume 13 (1975) no. 2, pp. 161-207
[4] Lipschitz classes and Poisson integrals on stratified groups, Studia Math., Volume 66 (1979) no. 1, pp. 37-55
[5] Littlewood–Paley theory on spaces of homogeneous type and the classical function spaces, Mem. Amer. Math. Soc., Volume 110 (1994) no. 530
[6] Estimation des fonctions de Littlewood–Paley–Stein sur les variétés riemanniennes à courbure non positive, Ann. Sci. École Norm. Sup. (4), Volume 20 (1987), pp. 505-544 (in French)
[7] Transformées de Riesz et fonctions de Littlewood–Paley sur les groupes non moyennables, C. R. Acad. Sci. Paris Sér. I Math., Volume 306 (1988) no. 7, pp. 327-330 (in French)
[8] On the Littlewood–Paley–Stein g-function, Trans. Amer. Math. Soc., Volume 347 (1995) no. 6, pp. 2201-2212
[9] Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Annals of Mathematics Studies, vol. 63, Princeton Univ. Press, Univ. of Tokyo Press, 1970
[10] Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton Univ. Press, 1970
[11] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993
Cited by Sources:
Comments - Policy