Let X be a smooth complex projective curve with , and let be the moduli space parametrizing isomorphism classes of stable vector bundles E over X of rank r with , where ξ is a fixed line bundle. We prove that the Brauer group is , where . Moreover, is generated by the class of the projective bundle over of relative dimension obtained by restricting the universal projective bundle over to a point of X.
Soit X une courbe projective lisse de genre et soit l'espace de modules paramétrant les fibrés vectoriels E stables sur X de rang r et ayant déterminant , où ξ est un fibré en droites donné. Nous montrons que le groupe de Brauer est égale à , où . De plus est engendré par la classe du fibré projectif sur de dimension relative , obtenu par restriction du fibré projectif universel sur en un point de X.
Accepted:
Published online:
Vikraman Balaji 1; Indranil Biswas 2; Ofer Gabber 3; Donihakkalu S. Nagaraj 4
@article{CRMATH_2007__345_5_265_0, author = {Vikraman Balaji and Indranil Biswas and Ofer Gabber and Donihakkalu S. Nagaraj}, title = {Brauer obstruction for a universal vector bundle}, journal = {Comptes Rendus. Math\'ematique}, pages = {265--268}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.011}, language = {en}, }
TY - JOUR AU - Vikraman Balaji AU - Indranil Biswas AU - Ofer Gabber AU - Donihakkalu S. Nagaraj TI - Brauer obstruction for a universal vector bundle JO - Comptes Rendus. Mathématique PY - 2007 SP - 265 EP - 268 VL - 345 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2007.07.011 LA - en ID - CRMATH_2007__345_5_265_0 ER -
Vikraman Balaji; Indranil Biswas; Ofer Gabber; Donihakkalu S. Nagaraj. Brauer obstruction for a universal vector bundle. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 265-268. doi : 10.1016/j.crma.2007.07.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.011/
[1] Brauer–Severi varieties, Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Math., vol. 917, Springer, Berlin–New York, 1982, pp. 194-210
[2] Principal bundles on projective varieties and the Donaldson–Uhlenbeck compactification, J. Differential Geom., Volume 76 (2007), pp. 351-398
[3] Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J., Volume 132 (2006), pp. 1-48
[4] Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., Volume 97 (1989), pp. 53-94
[5] Some theorems on Azumaya algebras, The Brauer Group, Lecture Notes in Math., vol. 844, Springer, Berlin–New York, 1981, pp. 129-209
[6] Cohomologie non abélienne, Die Grundlehren der Mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin–New York, 1971
[7] Le groupe de Brauer. III. Exemples et compléments, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 88-188
[8] Vector bundles on curves, Int. Colloq., T.I.F.R., Bombay, 1968, Oxford Univ. Press, London (1969), pp. 335-346
[9] Moduli for principal bundles over algebraic curves: I, Proc. Ind. Acad. Sci. Math. Sci., Volume 106 (1996), pp. 301-328
Cited by Sources:
Comments - Policy