Comptes Rendus
Algebraic Geometry
Brauer obstruction for a universal vector bundle
[Obstruction de Brauer pour un fibré vectoriel universel]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 265-268.

Soit X une courbe projective lisse de genre g(X)>2 et soit M l'espace de modules paramétrant les fibrés vectoriels E stables sur X de rang r et ayant déterminant rE=ξ, où ξ est un fibré en droites donné. Nous montrons que le groupe de Brauer Br(M) est égale à Z/nZ, où n=pgcd(r,degξ). De plus Br(M) est engendré par la classe du fibré projectif sur M de dimension relative r1, obtenu par restriction du fibré projectif universel sur X×M en un point de X.

Let X be a smooth complex projective curve with genus(X)>2, and let M be the moduli space parametrizing isomorphism classes of stable vector bundles E over X of rank r with rE=ξ, where ξ is a fixed line bundle. We prove that the Brauer group Br(M) is Z/nZ, where n=g.c.d.(r,degree(ξ)). Moreover, Br(M) is generated by the class of the projective bundle over M of relative dimension r1 obtained by restricting the universal projective bundle over X×M to a point of X.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.07.011

Vikraman Balaji 1 ; Indranil Biswas 2 ; Ofer Gabber 3 ; Donihakkalu S. Nagaraj 4

1 Chennai Mathematical Institute, Plot H1, SIPCOT IT Park, Padur, PO Siruseri 603103, India
2 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
3 Institut des Hautes Études Scientifiques, Le Bois-Marie, 35, route de Chartres, 91440 Bures-sur-Yvette, France
4 The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
@article{CRMATH_2007__345_5_265_0,
     author = {Vikraman Balaji and Indranil Biswas and Ofer Gabber and Donihakkalu S. Nagaraj},
     title = {Brauer obstruction for a universal vector bundle},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {265--268},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.011},
     language = {en},
}
TY  - JOUR
AU  - Vikraman Balaji
AU  - Indranil Biswas
AU  - Ofer Gabber
AU  - Donihakkalu S. Nagaraj
TI  - Brauer obstruction for a universal vector bundle
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 265
EP  - 268
VL  - 345
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.011
LA  - en
ID  - CRMATH_2007__345_5_265_0
ER  - 
%0 Journal Article
%A Vikraman Balaji
%A Indranil Biswas
%A Ofer Gabber
%A Donihakkalu S. Nagaraj
%T Brauer obstruction for a universal vector bundle
%J Comptes Rendus. Mathématique
%D 2007
%P 265-268
%V 345
%N 5
%I Elsevier
%R 10.1016/j.crma.2007.07.011
%G en
%F CRMATH_2007__345_5_265_0
Vikraman Balaji; Indranil Biswas; Ofer Gabber; Donihakkalu S. Nagaraj. Brauer obstruction for a universal vector bundle. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 265-268. doi : 10.1016/j.crma.2007.07.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.011/

[1] M. Artin Brauer–Severi varieties, Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Math., vol. 917, Springer, Berlin–New York, 1982, pp. 194-210

[2] V. Balaji Principal bundles on projective varieties and the Donaldson–Uhlenbeck compactification, J. Differential Geom., Volume 76 (2007), pp. 351-398

[3] I. Biswas; A.J. Parameswaran; S. Subramanian Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J., Volume 132 (2006), pp. 1-48

[4] J.-M. Drezet; M.S. Narasimhan Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., Volume 97 (1989), pp. 53-94

[5] O. Gabber Some theorems on Azumaya algebras, The Brauer Group, Lecture Notes in Math., vol. 844, Springer, Berlin–New York, 1981, pp. 129-209

[6] J. Giraud Cohomologie non abélienne, Die Grundlehren der Mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin–New York, 1971

[7] A. Grothendieck Le groupe de Brauer. III. Exemples et compléments, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 88-188

[8] M.S. Narasimhan; S. Ramanan Vector bundles on curves, Int. Colloq., T.I.F.R., Bombay, 1968, Oxford Univ. Press, London (1969), pp. 335-346

[9] A. Ramanathan Moduli for principal bundles over algebraic curves: I, Proc. Ind. Acad. Sci. Math. Sci., Volume 106 (1996), pp. 301-328

  • David Alfaya; Indranil Biswas; Tomás L. Gómez; Swarnava Mukhopadhyay Torelli theorem for moduli stacks of vector bundles and principal G-bundles, Journal of Geometry and Physics, Volume 207 (2025), p. 105350 | DOI:10.1016/j.geomphys.2024.105350
  • Indranil Biswas; Sujoy Chakraborty; Arijit Dey Brauer group of moduli stack of stable parabolic PGL(r)-bundles over a curve, International Journal of Mathematics, Volume 35 (2024) no. 01 | DOI:10.1142/s0129167x23500957
  • Yashonidhi Pandey Brauer group of moduli of torsors under Bruhat–Tits group scheme \varvecG over a curve, Proceedings - Mathematical Sciences, Volume 132 (2022) no. 2 | DOI:10.1007/s12044-022-00673-8
  • David Alfaya; Indranil Biswas Automorphism group of a moduli space of framed bundles over a curve, Geometriae Dedicata, Volume 211 (2021) no. 1, p. 71 | DOI:10.1007/s10711-020-00541-7
  • Roberto Fringuelli; Roberto Pirisi The Brauer Group of the Universal Moduli Space of Vector Bundles Over Smooth Curves, International Mathematics Research Notices, Volume 2021 (2021) no. 18, p. 13609 | DOI:10.1093/imrn/rnz300
  • Usha N. Bhosle Recent results on vector bundles, principal bundles and related topics, Indian Journal of Pure and Applied Mathematics, Volume 50 (2019) no. 3, p. 635 | DOI:10.1007/s13226-019-0347-2
  • Indranil Biswas; Tathagata Sengupta Brauer group of the moduli spaces of stable vector bundles of fixed determinant over a smooth curve, Bulletin des Sciences Mathématiques, Volume 144 (2018), p. 55 | DOI:10.1016/j.bulsci.2018.02.001
  • Indranil Biswas; Ajneet Dhillon; Norbert Hoffmann On the essential dimension of coherent sheaves, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 735, p. 265 | DOI:10.1515/crelle-2015-0028
  • Suratno Basu On a relative Mumford–Newstead theorem, Bulletin des Sciences Mathématiques, Volume 140 (2016) no. 8, p. 953 | DOI:10.1016/j.bulsci.2016.04.003
  • D. Baraglia Classification of the automorphism and isometry groups of Higgs bundle moduli spaces, Proceedings of the London Mathematical Society, Volume 112 (2016) no. 5, p. 827 | DOI:10.1112/plms/pdw014
  • Indranil Biswas; Sean Lawton Fundamental group of moduli spaces of representations, Geometriae Dedicata, Volume 178 (2015) no. 1, p. 135 | DOI:10.1007/s10711-015-0048-x
  • Indranil Biswas; Ajneet Dhillon; Jacques Hurtubise Brauer groups of Quot schemes, Michigan Mathematical Journal, Volume 64 (2015) no. 3 | DOI:10.1307/mmj/1441116655
  • Usha N. Bhosle; Indranil Biswas Brauer Group and Birational Type of Moduli Spaces of Torsionfree Sheaves on a Nodal Curve, Communications in Algebra, Volume 42 (2014) no. 4, p. 1769 | DOI:10.1080/00927872.2012.749263
  • Max Lieblich On the Ubiquity of Twisted Sheaves, Birational Geometry, Rational Curves, and Arithmetic (2013), p. 205 | DOI:10.1007/978-1-4614-6482-2_10
  • Indranil Biswas; Amit Hogadi; Yogish I. Holla The Brauer group of desingularization of moduli spaces of vector bundles over a curve, Central European Journal of Mathematics, Volume 10 (2012) no. 4, p. 1300 | DOI:10.2478/s11533-012-0071-1
  • Indranil Biswas; Marina Logares; Vicente Muñoz Brauer Group of Moduli Spaces of Pairs, Communications in Algebra, Volume 40 (2012) no. 5, p. 1605 | DOI:10.1080/00927872.2011.552083
  • Peter Bouwknegt; Varghese Mathai; Siye Wu Bundle gerbes and moduli spaces, Journal of Geometry and Physics, Volume 62 (2012) no. 1, p. 1 | DOI:10.1016/j.geomphys.2011.08.005
  • Davide Gaiotto; Gregory W. Moore; Andrew Neitzke Wall-crossing in coupled 2d-4d systems, Journal of High Energy Physics, Volume 2012 (2012) no. 12 | DOI:10.1007/jhep12(2012)082
  • Indranil Biswas; Marina Logares; Vicente Muñoz Rationality of the Moduli Space of Stable Pairs over a Complex Curve, Nonlinear Analysis, Volume 68 (2012), p. 65 | DOI:10.1007/978-1-4614-3498-6_5
  • Indranil Biswas; Arijit Dey Brauer group of a moduli space of parabolic vector bundles over a curve, Journal of K-theory, Volume 8 (2011) no. 3, p. 437 | DOI:10.1017/is011001009jkt138
  • Indranil Biswas; Norbert Hoffmann; Amit Hogadi; Alexander Schmitt The Brauer group of moduli spaces of vector bundles over a real curve, Proceedings of the American Mathematical Society, Volume 139 (2011) no. 12, p. 4173 | DOI:10.1090/s0002-9939-2011-10837-2
  • Indranil Biswas; Tomás L. Gómez; Vicente Muñoz Rationality and Brauer group of a moduli space of framed bundles, Tbilisi Mathematical Journal, Volume 4 (2011) no. none | DOI:10.32513/tbilisi/1528768866
  • Indranil Biswas; Amit Hogadi Brauer group of moduli spaces of PGL(r)-bundles over a curve, Advances in Mathematics, Volume 225 (2010) no. 5, p. 2317 | DOI:10.1016/j.aim.2010.04.020
  • A. Dhillon; N. Lemire Upper bounds for the essential dimension of the moduli stack of SL n -bundles over a curve, Transformation Groups, Volume 14 (2009) no. 4, p. 747 | DOI:10.1007/s00031-009-9069-6

Cité par 24 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: