[Obstruction de Brauer pour un fibré vectoriel universel]
Soit X une courbe projective lisse de genre
Let X be a smooth complex projective curve with
Accepté le :
Publié le :
Vikraman Balaji 1 ; Indranil Biswas 2 ; Ofer Gabber 3 ; Donihakkalu S. Nagaraj 4
@article{CRMATH_2007__345_5_265_0, author = {Vikraman Balaji and Indranil Biswas and Ofer Gabber and Donihakkalu S. Nagaraj}, title = {Brauer obstruction for a universal vector bundle}, journal = {Comptes Rendus. Math\'ematique}, pages = {265--268}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.011}, language = {en}, }
TY - JOUR AU - Vikraman Balaji AU - Indranil Biswas AU - Ofer Gabber AU - Donihakkalu S. Nagaraj TI - Brauer obstruction for a universal vector bundle JO - Comptes Rendus. Mathématique PY - 2007 SP - 265 EP - 268 VL - 345 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2007.07.011 LA - en ID - CRMATH_2007__345_5_265_0 ER -
Vikraman Balaji; Indranil Biswas; Ofer Gabber; Donihakkalu S. Nagaraj. Brauer obstruction for a universal vector bundle. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 265-268. doi : 10.1016/j.crma.2007.07.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.011/
[1] Brauer–Severi varieties, Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Math., vol. 917, Springer, Berlin–New York, 1982, pp. 194-210
[2] Principal bundles on projective varieties and the Donaldson–Uhlenbeck compactification, J. Differential Geom., Volume 76 (2007), pp. 351-398
[3] Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J., Volume 132 (2006), pp. 1-48
[4] Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., Volume 97 (1989), pp. 53-94
[5] Some theorems on Azumaya algebras, The Brauer Group, Lecture Notes in Math., vol. 844, Springer, Berlin–New York, 1981, pp. 129-209
[6] Cohomologie non abélienne, Die Grundlehren der Mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin–New York, 1971
[7] Le groupe de Brauer. III. Exemples et compléments, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 88-188
[8] Vector bundles on curves, Int. Colloq., T.I.F.R., Bombay, 1968, Oxford Univ. Press, London (1969), pp. 335-346
[9] Moduli for principal bundles over algebraic curves: I, Proc. Ind. Acad. Sci. Math. Sci., Volume 106 (1996), pp. 301-328
- Torelli theorem for moduli stacks of vector bundles and principal G-bundles, Journal of Geometry and Physics, Volume 207 (2025), p. 105350 | DOI:10.1016/j.geomphys.2024.105350
- Brauer group of moduli stack of stable parabolic PGL(r)-bundles over a curve, International Journal of Mathematics, Volume 35 (2024) no. 01 | DOI:10.1142/s0129167x23500957
- Brauer group of moduli of torsors under Bruhat–Tits group scheme
over a curve, Proceedings - Mathematical Sciences, Volume 132 (2022) no. 2 | DOI:10.1007/s12044-022-00673-8 - Automorphism group of a moduli space of framed bundles over a curve, Geometriae Dedicata, Volume 211 (2021) no. 1, p. 71 | DOI:10.1007/s10711-020-00541-7
- The Brauer Group of the Universal Moduli Space of Vector Bundles Over Smooth Curves, International Mathematics Research Notices, Volume 2021 (2021) no. 18, p. 13609 | DOI:10.1093/imrn/rnz300
- Recent results on vector bundles, principal bundles and related topics, Indian Journal of Pure and Applied Mathematics, Volume 50 (2019) no. 3, p. 635 | DOI:10.1007/s13226-019-0347-2
- Brauer group of the moduli spaces of stable vector bundles of fixed determinant over a smooth curve, Bulletin des Sciences Mathématiques, Volume 144 (2018), p. 55 | DOI:10.1016/j.bulsci.2018.02.001
- On the essential dimension of coherent sheaves, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 735, p. 265 | DOI:10.1515/crelle-2015-0028
- On a relative Mumford–Newstead theorem, Bulletin des Sciences Mathématiques, Volume 140 (2016) no. 8, p. 953 | DOI:10.1016/j.bulsci.2016.04.003
- Classification of the automorphism and isometry groups of Higgs bundle moduli spaces, Proceedings of the London Mathematical Society, Volume 112 (2016) no. 5, p. 827 | DOI:10.1112/plms/pdw014
- Fundamental group of moduli spaces of representations, Geometriae Dedicata, Volume 178 (2015) no. 1, p. 135 | DOI:10.1007/s10711-015-0048-x
- Brauer groups of Quot schemes, Michigan Mathematical Journal, Volume 64 (2015) no. 3 | DOI:10.1307/mmj/1441116655
- Brauer Group and Birational Type of Moduli Spaces of Torsionfree Sheaves on a Nodal Curve, Communications in Algebra, Volume 42 (2014) no. 4, p. 1769 | DOI:10.1080/00927872.2012.749263
- On the Ubiquity of Twisted Sheaves, Birational Geometry, Rational Curves, and Arithmetic (2013), p. 205 | DOI:10.1007/978-1-4614-6482-2_10
- The Brauer group of desingularization of moduli spaces of vector bundles over a curve, Central European Journal of Mathematics, Volume 10 (2012) no. 4, p. 1300 | DOI:10.2478/s11533-012-0071-1
- Brauer Group of Moduli Spaces of Pairs, Communications in Algebra, Volume 40 (2012) no. 5, p. 1605 | DOI:10.1080/00927872.2011.552083
- Bundle gerbes and moduli spaces, Journal of Geometry and Physics, Volume 62 (2012) no. 1, p. 1 | DOI:10.1016/j.geomphys.2011.08.005
- Wall-crossing in coupled 2d-4d systems, Journal of High Energy Physics, Volume 2012 (2012) no. 12 | DOI:10.1007/jhep12(2012)082
- Rationality of the Moduli Space of Stable Pairs over a Complex Curve, Nonlinear Analysis, Volume 68 (2012), p. 65 | DOI:10.1007/978-1-4614-3498-6_5
- Brauer group of a moduli space of parabolic vector bundles over a curve, Journal of K-theory, Volume 8 (2011) no. 3, p. 437 | DOI:10.1017/is011001009jkt138
- The Brauer group of moduli spaces of vector bundles over a real curve, Proceedings of the American Mathematical Society, Volume 139 (2011) no. 12, p. 4173 | DOI:10.1090/s0002-9939-2011-10837-2
- Rationality and Brauer group of a moduli space of framed bundles, Tbilisi Mathematical Journal, Volume 4 (2011) no. none | DOI:10.32513/tbilisi/1528768866
- Brauer group of moduli spaces of PGL(r)-bundles over a curve, Advances in Mathematics, Volume 225 (2010) no. 5, p. 2317 | DOI:10.1016/j.aim.2010.04.020
- Upper bounds for the essential dimension of the moduli stack of SL n -bundles over a curve, Transformation Groups, Volume 14 (2009) no. 4, p. 747 | DOI:10.1007/s00031-009-9069-6
Cité par 24 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier