[De nouvelles conditions de compatibilité pour le théorème fondamental de la théorie des surfaces]
Le théorème fondamental de la théorie des surfaces affirme classiquement que, si un champ de matrices
Dans cette Note, nous identifions de nouvelles conditions de compatibilité, exprimées à nouveau à l'aide des fonctions
The fundamental theorem of surface theory classically asserts that, if a field of positive-definite symmetric matrices
In this Note, we identify new compatibility conditions, expressed again in terms of the functions
Publié le :
Philippe G. Ciarlet 1 ; Liliana Gratie 2 ; Cristinel Mardare 3
@article{CRMATH_2007__345_5_273_0, author = {Philippe G. Ciarlet and Liliana Gratie and Cristinel Mardare}, title = {New compatibility conditions for the fundamental theorem of surface theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {273--278}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.014}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Liliana Gratie AU - Cristinel Mardare TI - New compatibility conditions for the fundamental theorem of surface theory JO - Comptes Rendus. Mathématique PY - 2007 SP - 273 EP - 278 VL - 345 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2007.07.014 LA - en ID - CRMATH_2007__345_5_273_0 ER -
Philippe G. Ciarlet; Liliana Gratie; Cristinel Mardare. New compatibility conditions for the fundamental theorem of surface theory. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 273-278. doi : 10.1016/j.crma.2007.07.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.014/
[1] La Géométrie des Espaces de Riemann, Mémorial des Sciences Mathématiques, Fasc. 9, Gauthier-Villars, Paris, 1925
[2] An Introduction to Differential Geometry with Applications to Elasticity, Springer, Dordrecht, 2005
[3] P.G. Ciarlet, L. Gratie, C. Mardare, A new approach to the fundamental theorem of surface theory, in preparation
[4] Another approach to the fundamental theorem of Riemannian geometry in
[5] On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2001), pp. 167-185
[6] On rigid and infinitesimal rigid displacements in shell theory, J. Math. Pures Appl., Volume 83 (2004), pp. 1-15
[7] On the embedding problem in differential geometry, Amer. J. Math., Volume 72 (1950), pp. 553-564
[8] Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Polon. Math., Volume 5 (1926), pp. 38-43
[9] The fundamental theorem of surface theory for surfaces with little regularity, J. Elasticity, Volume 73 (2003), pp. 251-290
[10] On Pfaff systems with
[11] On systems of first order linear partial differential equations with
[12] The rotation associated with large strains, SIAM J. Appl. Math., Volume 25 (1973), pp. 483-491
[13] Compatibility equations in shell theory, Internat. J. Engrg. Sci., Volume 34 (1996), pp. 495-499
Cité par Sources :
Commentaires - Politique