The fundamental theorem of surface theory classically asserts that, if a field of positive-definite symmetric matrices of order two and a field of symmetric matrices of order two together satisfy the Gauss and Codazzi–Mainardi equations in a connected and simply-connected open subset ω of , then there exists an immersion such that these fields are the first and second fundamental forms of the surface and this surface is unique up to proper isometries in .
In this Note, we identify new compatibility conditions, expressed again in terms of the functions and , that likewise lead to a similar existence and uniqueness theorem. These conditions take the form
Le théorème fondamental de la théorie des surfaces affirme classiquement que, si un champ de matrices symétriques définies positives d'ordre deux et un champ de matrices symétriques d'ordre deux satisfont ensemble les équations de Gauss et Codazzi–Mainardi dans un ouvert connexe et simplement connexe, alors il existe une immersion telle que ces deux champs soient les première et deuxième formes fondamentales de la surface , et cette surface est unique aux isométries propres de près.
Dans cette Note, nous identifions de nouvelles conditions de compatibilité, exprimées à nouveau à l'aide des fonctions et , qui conduisent aussi à un théorème analogue d'existence et d'unicité. Ces conditions sont de la forme
Published online:
Philippe G. Ciarlet 1; Liliana Gratie 2; Cristinel Mardare 3
@article{CRMATH_2007__345_5_273_0, author = {Philippe G. Ciarlet and Liliana Gratie and Cristinel Mardare}, title = {New compatibility conditions for the fundamental theorem of surface theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {273--278}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.014}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Liliana Gratie AU - Cristinel Mardare TI - New compatibility conditions for the fundamental theorem of surface theory JO - Comptes Rendus. Mathématique PY - 2007 SP - 273 EP - 278 VL - 345 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2007.07.014 LA - en ID - CRMATH_2007__345_5_273_0 ER -
Philippe G. Ciarlet; Liliana Gratie; Cristinel Mardare. New compatibility conditions for the fundamental theorem of surface theory. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 273-278. doi : 10.1016/j.crma.2007.07.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.014/
[1] La Géométrie des Espaces de Riemann, Mémorial des Sciences Mathématiques, Fasc. 9, Gauthier-Villars, Paris, 1925
[2] An Introduction to Differential Geometry with Applications to Elasticity, Springer, Dordrecht, 2005
[3] P.G. Ciarlet, L. Gratie, C. Mardare, A new approach to the fundamental theorem of surface theory, in preparation
[4] Another approach to the fundamental theorem of Riemannian geometry in , by way of rotation fields, J. Math. Pures Appl., Volume 87 (2007), pp. 237-252
[5] On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2001), pp. 167-185
[6] On rigid and infinitesimal rigid displacements in shell theory, J. Math. Pures Appl., Volume 83 (2004), pp. 1-15
[7] On the embedding problem in differential geometry, Amer. J. Math., Volume 72 (1950), pp. 553-564
[8] Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Polon. Math., Volume 5 (1926), pp. 38-43
[9] The fundamental theorem of surface theory for surfaces with little regularity, J. Elasticity, Volume 73 (2003), pp. 251-290
[10] On Pfaff systems with coefficients and their applications in differential geometry, J. Math. Pures Appl., Volume 84 (2005), pp. 1659-1692
[11] On systems of first order linear partial differential equations with coefficients, Adv. Differential Equations, Volume 73 (2007), pp. 301-360
[12] The rotation associated with large strains, SIAM J. Appl. Math., Volume 25 (1973), pp. 483-491
[13] Compatibility equations in shell theory, Internat. J. Engrg. Sci., Volume 34 (1996), pp. 495-499
Cited by Sources:
Comments - Policy