Comptes Rendus
Differential Geometry
New compatibility conditions for the fundamental theorem of surface theory
Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 273-278.

The fundamental theorem of surface theory classically asserts that, if a field of positive-definite symmetric matrices (aαβ) of order two and a field of symmetric matrices (bαβ) of order two together satisfy the Gauss and Codazzi–Mainardi equations in a connected and simply-connected open subset ω of R2, then there exists an immersion θ:ωR3 such that these fields are the first and second fundamental forms of the surface θ(ω) and this surface is unique up to proper isometries in R3.

In this Note, we identify new compatibility conditions, expressed again in terms of the functions aαβ and bαβ, that likewise lead to a similar existence and uniqueness theorem. These conditions take the form

1A22A1+A1A2A2A1=0in ω,
where A1 and A2 are antisymmetric matrix fields of order three that are functions of the fields (aαβ) and (bαβ), the field (aαβ) appearing in particular through its square root. The unknown immersion θ:ωR3 is found in the present approach in function spaces ‘with little regularity’, viz., Wloc2,p(ω;R3), p>2.

Le théorème fondamental de la théorie des surfaces affirme classiquement que, si un champ de matrices (aαβ) symétriques définies positives d'ordre deux et un champ de matrices (bαβ) symétriques d'ordre deux satisfont ensemble les équations de Gauss et Codazzi–Mainardi dans un ouvert ωR2 connexe et simplement connexe, alors il existe une immersion θ:ωR3 telle que ces deux champs soient les première et deuxième formes fondamentales de la surface θ(ω), et cette surface est unique aux isométries propres de R3 près.

Dans cette Note, nous identifions de nouvelles conditions de compatibilité, exprimées à nouveau à l'aide des fonctions aαβ et bαβ, qui conduisent aussi à un théorème analogue d'existence et d'unicité. Ces conditions sont de la forme

1A22A1+A1A2A2A1=0 dans ω,
A1 et A2 sont des champs de matrices antisymétriques d'ordre trois, qui sont des fonctions des champs (aαβ) et (bαβ), le champ (aαβ) apparaissant en particulier par l'intermédiaire de sa racine carrée. L'immersion inconnue θ:ωR3 est trouvée dans cette approche dans des espaces fonctionnelles « de faible régularité », à savoir Wloc2,p(ω;R3), p>2.

Accepted:
Published online:
DOI: 10.1016/j.crma.2007.07.014

Philippe G. Ciarlet 1; Liliana Gratie 2; Cristinel Mardare 3

1 Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
2 Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
3 Laboratoire Jacques-Louis Lions, Université Pierre-et-Marie-Curie, 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2007__345_5_273_0,
     author = {Philippe G. Ciarlet and Liliana Gratie and Cristinel Mardare},
     title = {New compatibility conditions for the fundamental theorem of surface theory},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {273--278},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.014},
     language = {en},
}
TY  - JOUR
AU  - Philippe G. Ciarlet
AU  - Liliana Gratie
AU  - Cristinel Mardare
TI  - New compatibility conditions for the fundamental theorem of surface theory
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 273
EP  - 278
VL  - 345
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.014
LA  - en
ID  - CRMATH_2007__345_5_273_0
ER  - 
%0 Journal Article
%A Philippe G. Ciarlet
%A Liliana Gratie
%A Cristinel Mardare
%T New compatibility conditions for the fundamental theorem of surface theory
%J Comptes Rendus. Mathématique
%D 2007
%P 273-278
%V 345
%N 5
%I Elsevier
%R 10.1016/j.crma.2007.07.014
%G en
%F CRMATH_2007__345_5_273_0
Philippe G. Ciarlet; Liliana Gratie; Cristinel Mardare. New compatibility conditions for the fundamental theorem of surface theory. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 273-278. doi : 10.1016/j.crma.2007.07.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.014/

[1] E. Cartan La Géométrie des Espaces de Riemann, Mémorial des Sciences Mathématiques, Fasc. 9, Gauthier-Villars, Paris, 1925

[2] P.G. Ciarlet An Introduction to Differential Geometry with Applications to Elasticity, Springer, Dordrecht, 2005

[3] P.G. Ciarlet, L. Gratie, C. Mardare, A new approach to the fundamental theorem of surface theory, in preparation

[4] P.G. Ciarlet; L. Gratie; O. Iosifescu; C. Mardare; C. Vallée Another approach to the fundamental theorem of Riemannian geometry in R3, by way of rotation fields, J. Math. Pures Appl., Volume 87 (2007), pp. 237-252

[5] P.G. Ciarlet; F. Larsonneur On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2001), pp. 167-185

[6] P.G. Ciarlet; C. Mardare On rigid and infinitesimal rigid displacements in shell theory, J. Math. Pures Appl., Volume 83 (2004), pp. 1-15

[7] P. Hartman; A. Wintner On the embedding problem in differential geometry, Amer. J. Math., Volume 72 (1950), pp. 553-564

[8] M. Janet Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Polon. Math., Volume 5 (1926), pp. 38-43

[9] S. Mardare The fundamental theorem of surface theory for surfaces with little regularity, J. Elasticity, Volume 73 (2003), pp. 251-290

[10] S. Mardare On Pfaff systems with Lp coefficients and their applications in differential geometry, J. Math. Pures Appl., Volume 84 (2005), pp. 1659-1692

[11] S. Mardare On systems of first order linear partial differential equations with Lp coefficients, Adv. Differential Equations, Volume 73 (2007), pp. 301-360

[12] R.T. Shield The rotation associated with large strains, SIAM J. Appl. Math., Volume 25 (1973), pp. 483-491

[13] C. Vallée; D. Fortuné Compatibility equations in shell theory, Internat. J. Engrg. Sci., Volume 34 (1996), pp. 495-499

Cited by Sources:

Comments - Policy