[De nouvelles conditions de compatibilité pour le théorème fondamental de la théorie des surfaces]
The fundamental theorem of surface theory classically asserts that, if a field of positive-definite symmetric matrices
In this Note, we identify new compatibility conditions, expressed again in terms of the functions
Le théorème fondamental de la théorie des surfaces affirme classiquement que, si un champ de matrices
Dans cette Note, nous identifions de nouvelles conditions de compatibilité, exprimées à nouveau à l'aide des fonctions
Publié le :
Philippe G. Ciarlet 1 ; Liliana Gratie 2 ; Cristinel Mardare 3
@article{CRMATH_2007__345_5_273_0, author = {Philippe G. Ciarlet and Liliana Gratie and Cristinel Mardare}, title = {New compatibility conditions for the fundamental theorem of surface theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {273--278}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.014}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Liliana Gratie AU - Cristinel Mardare TI - New compatibility conditions for the fundamental theorem of surface theory JO - Comptes Rendus. Mathématique PY - 2007 SP - 273 EP - 278 VL - 345 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2007.07.014 LA - en ID - CRMATH_2007__345_5_273_0 ER -
Philippe G. Ciarlet; Liliana Gratie; Cristinel Mardare. New compatibility conditions for the fundamental theorem of surface theory. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 273-278. doi : 10.1016/j.crma.2007.07.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.014/
[1] La Géométrie des Espaces de Riemann, Mémorial des Sciences Mathématiques, Fasc. 9, Gauthier-Villars, Paris, 1925
[2] An Introduction to Differential Geometry with Applications to Elasticity, Springer, Dordrecht, 2005
[3] P.G. Ciarlet, L. Gratie, C. Mardare, A new approach to the fundamental theorem of surface theory, in preparation
[4] Another approach to the fundamental theorem of Riemannian geometry in
[5] On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2001), pp. 167-185
[6] On rigid and infinitesimal rigid displacements in shell theory, J. Math. Pures Appl., Volume 83 (2004), pp. 1-15
[7] On the embedding problem in differential geometry, Amer. J. Math., Volume 72 (1950), pp. 553-564
[8] Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Polon. Math., Volume 5 (1926), pp. 38-43
[9] The fundamental theorem of surface theory for surfaces with little regularity, J. Elasticity, Volume 73 (2003), pp. 251-290
[10] On Pfaff systems with
[11] On systems of first order linear partial differential equations with
[12] The rotation associated with large strains, SIAM J. Appl. Math., Volume 25 (1973), pp. 483-491
[13] Compatibility equations in shell theory, Internat. J. Engrg. Sci., Volume 34 (1996), pp. 495-499
- ON THE INCREMENTAL CONSTITUTIVE RELATIONS AND COMPATIBILITY EQUATIONS FOR THIN SHAPE MEMORY ALLOY SHELLS UNDERGOING NON-ISOTHERMAL PHASE TRANSITIONS, Composites: Mechanics, Computations, Applications: An International Journal, Volume 14 (2023) no. 1, p. 1 | DOI:10.1615/compmechcomputapplintj.2022044513
- A new approach to the fundamental theorem of surface theory, Archive for Rational Mechanics and Analysis, Volume 188 (2008) no. 3, pp. 457-473 | DOI:10.1007/s00205-007-0094-0 | Zbl:1142.53007
- Determination of the midsurface of a deformed shell from prescribed surface strains and bendings via the polar decomposition, International Journal of Non-Linear Mechanics, Volume 43 (2008) no. 7, p. 579 | DOI:10.1016/j.ijnonlinmec.2008.02.003
Cité par 3 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier