Let and consider the subcritical nonlinear Schrödinger equation, , with initial data . When , Kato proved that if a maximal solution exists, then it is unique in . Previously, uniqueness had only been proven in strictly smaller subspaces. The existence of a solution is assured when , so that the subcritical nonlinear Schrödinger equation is unconditionally locally well-posed in . We extend the uniqueness result so that the subcritical nonlinear Schrödinger equation is unconditionally locally well-posed in when .
On considère l'équation de Schrödinger linéaire sous-critique , sur , , à donnée initiale dans . Si , Kato a démontré que si il existe une solution maximale, elle est unique dans . Les seuls résultats d'unicité connus auparavant étaient dans des sous-espaces stricts de cet espace. L'existence d'une solution étant connue pour , l'équation de Schrödinger sous-critique est localement bien posée dans sans condition supplémentaire pour l'unicité. Dans cette Note, nous généralisons le résultat d'unicité de Kato, montrant que l'équation est bien posée avec unicité inconditionnelle dans tous les espaces , .
Accepted:
Published online:
Keith M. Rogers 1
@article{CRMATH_2007__345_7_395_0, author = {Keith M. Rogers}, title = {Unconditional well-posedness for subcritical {NLS} in $ {H}^{s}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {395--398}, publisher = {Elsevier}, volume = {345}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.09.003}, language = {en}, }
Keith M. Rogers. Unconditional well-posedness for subcritical NLS in $ {H}^{s}$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 395-398. doi : 10.1016/j.crma.2007.09.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.003/
[1] The Cauchy problem for the nonlinear Schrödinger equation in , Manuscripta Math., Volume 61 (1988) no. 4, pp. 477-494
[2] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal., Volume 14 (1990) no. 10, pp. 807-836
[3] Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., Volume 147 (1992) no. 1, pp. 75-100
[4] Unconditional well-posedness for semilinear Schrödinger and wave equations in , Harmonic Analysis at Mount Holyoke, Contemp. Math., vol. 320, Amer. Math. Soc., Providence, RI, 2003, pp. 147-156
[5] Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in , Commun. Contemp. Math., Volume 5 (2003) no. 3, pp. 349-367
[6] The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985) no. 4, pp. 309-327
[7] On nonlinear Schrödinger equations. II. -solutions and unconditional well-posedness, J. Anal. Math., Volume 67 (1995), pp. 281-306
[8] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980
[9] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714
[10] Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., Volume 359 (2007) no. 5, pp. 2123-2136 (electronic)
[11] Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., Volume 110 (1987) no. 3, pp. 415-426
Cited by Sources:
Comments - Policy