The discrete Couzin–Vicsek algorithm (CVA) has been proposed to model the interactions of individuals among animal societies such as schools of fish. In this Note, we propose a kinetic (mean-field) version of the CVA model and provide its formal macroscopic limit. The final macroscopic model involves a conservation equation for the density of the individuals and a non-conservative equation for the director of the mean velocity. The result is based on the introduction of a non-conventional concept of a collisional invariant of the collision operator.
L'algorithme discret de Couzin–Vicsek (CVA) a été proposé pour modéliser l'interaction d'individus au sein de sociétés animales comme les bancs de poissons. Dans cette Note, nous proposons une version cinétique (champ-moyen) de l'algorithme CVA et en donnons la limite macroscopique formelle. Le modèle macroscopique final comprend une équation de conservation pour la densité des individus et une équation non-conservative pour le vecteur directeur de la vitesse moyenne. Ce résultat est basé sur l'introduction d'un concept non-conventionnel d'invariant collisionnel de l'opérateur de collision.
Accepted:
Published online:
Pierre Degond 1; Sébastien Motsch 1
@article{CRMATH_2007__345_10_555_0, author = {Pierre Degond and S\'ebastien Motsch}, title = {Macroscopic limit of self-driven particles with orientation interaction}, journal = {Comptes Rendus. Math\'ematique}, pages = {555--560}, publisher = {Elsevier}, volume = {345}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.10.024}, language = {en}, }
Pierre Degond; Sébastien Motsch. Macroscopic limit of self-driven particles with orientation interaction. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 555-560. doi : 10.1016/j.crma.2007.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.024/
[1] Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach, J. Stat. Phys., Volume 112 (2003) no. 1/2, pp. 135-153
[2] Collective memory and spatial sorting in animal groups, J. Theor. Biol., Volume 218 (2002), pp. 1-11
[3] Emergent behavior in flocks, IEEE Trans. Automat. Control, Volume 52 (2007), pp. 852-862
[4] P. Degond, S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior, preprint
[5] P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation interaction, preprint
[6] Self-propelled particles with soft-core interactions: pattern, stability and collapse, Lett. Phys. Rev., Volume 96 (2006), p. 104302
[7] J. Gautrais, S. Motsch, C. Jost, M. Soria, A. Campo, R. Fournier, S. Bianco, G. Théraulaz, Analyzing fish movement as a persistent turning walker, in preparation
[8] Onset of collective and cohesive motion, Lett. Phys. Rev., Volume 92 (2004), p. 025702
[9] Hydrodynamic model for a system of self-propelling particles with conservative kinematic constraints, Europhys. Lett., Volume 71 (2005), pp. 207-213
[10] A non-local model for a swarm, J. Math. Biol., Volume 38 (1999), pp. 534-570
[11] Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., Volume 47 (2003), pp. 353-389
[12] Collective behaviour of self propelling particles with kinematic constraints; the relations between the discrete and the continuous description, Physica A, Volume 381 (2007), pp. 39-46
[13] Hydrodynamic model for the system of self propelling particles with conservative kinematic constraints; two dimensional stationary solutions, Physica A, Volume 366 (2006), pp. 107-114
[14] Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., Volume 65 (2004), pp. 152-174
[15] A nonlocal continuum model for biological aggregation, Bull. Math. Biol., Volume 68 (2006), pp. 1601-1623
[16] Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., Volume 75 (1995) no. 6, pp. 1226-1229
Cited by Sources:
Comments - Politique