In this Note, we give some results on error estimates and convergence for interpolation by div-rot spline under tension in the classical vectorial Sobolev space on an open bounded set with a Lipschitz-continuous boundary.
On donne quelques résultats sur l'estimation de l'erreur et la convergence pour l'interpolation vectorielle de type div-rot sous tension de fonctions appartenant aux espaces vectoriels classiques de Sobolev dans un domaine borné à frontière lipschitzienne.
Accepted:
Published online:
Mohammed-Najib Benbourhim 1; Abderrahman Bouhamidi 2
@article{CRMATH_2007__345_9_527_0, author = {Mohammed-Najib Benbourhim and Abderrahman Bouhamidi}, title = {Estimation de l'erreur pour l'interpolation vectorielle par les div-rot splines sous tension}, journal = {Comptes Rendus. Math\'ematique}, pages = {527--530}, publisher = {Elsevier}, volume = {345}, number = {9}, year = {2007}, doi = {10.1016/j.crma.2007.10.002}, language = {fr}, }
TY - JOUR AU - Mohammed-Najib Benbourhim AU - Abderrahman Bouhamidi TI - Estimation de l'erreur pour l'interpolation vectorielle par les div-rot splines sous tension JO - Comptes Rendus. Mathématique PY - 2007 SP - 527 EP - 530 VL - 345 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2007.10.002 LA - fr ID - CRMATH_2007__345_9_527_0 ER -
%0 Journal Article %A Mohammed-Najib Benbourhim %A Abderrahman Bouhamidi %T Estimation de l'erreur pour l'interpolation vectorielle par les div-rot splines sous tension %J Comptes Rendus. Mathématique %D 2007 %P 527-530 %V 345 %N 9 %I Elsevier %R 10.1016/j.crma.2007.10.002 %G fr %F CRMATH_2007__345_9_527_0
Mohammed-Najib Benbourhim; Abderrahman Bouhamidi. Estimation de l'erreur pour l'interpolation vectorielle par les div-rot splines sous tension. Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 527-530. doi : 10.1016/j.crma.2007.10.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.002/
[1] A vector spline approximation, J. Approx. Theory, Volume 67 (1991), pp. 51-79
[2] Approximation of vector fields by thin plate splines with tension, J. Approx. Theory, Volume 136 (2005), pp. 198-229
[3] Error estimates in Sobolev spaces for interpolating thin plate splines under tension, J. Comput. Appl. Math., Volume 200 (2007), pp. 208-216
[4] F. Chen, S. Suter, Elastic spline models for human cardiac motion estimation, in: IEEE Nonrigid and Articulated Motion Workshop, Puerto Rico, June 1997, pp. 120–127
[5] Vectorial interpolation using radial-basis-like functions, Comput. Math. Appl., Volume 43 (2002) no. 3–5, pp. 393-411
[6] Local recovery of a solenoidal vector field by an extension of the thin plate spline technique, Numer. Algorithms, Volume 5 (1993) no. 1–4, pp. 121-129
[7] Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, 1967
[8] D. Suter, Motion estimation and vector splines, in: Proc. CVPR 94, Seattle, WA, IEEE, June 1994, pp. 939–942
[9] Left ventricular motion reconstruction based on elastic vector splines, IEEE Trans. Med. Imag., Volume 19 (April 2000) no. 4, pp. 295-305
[10] Elastic registration of biological images using vector-splines regularization, IEEE Trans. Biomedical Engineering, Volume 52 (2005) no. 4, pp. 652-663
Cited by Sources:
Comments - Policy