Comptes Rendus
Numerical Analysis
An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit
Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 531-536.

This Note is devoted to the discretization of the fluid formulation of the Schrödinger equation (the Madelung system). We explore both the discretization of the system in Eulerian coordinates and Lagrangian coordinates. We propose schemes for these two formulations which are implicit in the mass flux term. This feature allows us to show that these schemes are asymptotic preserving i.e. they provide discretizations of the semi-classical Hamilton–Jacobi equation when the scaled Planck constant ε tends to 0. An analysis performed on the linearized systems also shows that they are asymptotically stable i.e. their stability condition remains bounded as ε tends to 0. Numerical simulations are given; they confirm that the considered schemes allow us to numerically bridge the quantum and semi-classical scales.

Cette Note est consacrée à la discrétisation de la formulation fluide de l'équation de Schrödinger (le système de Madelung) en formulations eulerienne et lagrangienne. Nous proposons des schémas pour ces deux formulations qui sont implicites dans le terme de flux de masse. Cette caractéristique nous permet de montrer que ces schémas sont asymptotiquement préservatifs, c'est à dire qu'ils fournissent une discrétisation des équations de Hamilton–Jacobi semi-classiques lorsque la constante de Planck adimensionnée ε tend vers 0. De plus, une analyse linéarisée permet de montrer que ces schémas sont asymptotiquement stables, c'est à dire que leur contrainte de stabilité reste bornée lorsque ε tend vers 0. Des simulations numériques sont proposées ; elles confirment que les schémas considérés permettent de fournir une passerelle numérique entre les échelles quantiques et semi-classiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.014
Pierre Degond 1; Samy Gallego 1; Florian Méhats 2

1 IMT, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4, France
2 IRMAR, Université de Rennes, campus de Beaulieu, 35042 Rennes cedex, France
@article{CRMATH_2007__345_9_531_0,
     author = {Pierre Degond and Samy Gallego and Florian M\'ehats},
     title = {An asymptotic preserving scheme for the {Schr\"odinger} equation in the semiclassical limit},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {531--536},
     publisher = {Elsevier},
     volume = {345},
     number = {9},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.014},
     language = {en},
}
TY  - JOUR
AU  - Pierre Degond
AU  - Samy Gallego
AU  - Florian Méhats
TI  - An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 531
EP  - 536
VL  - 345
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.014
LA  - en
ID  - CRMATH_2007__345_9_531_0
ER  - 
%0 Journal Article
%A Pierre Degond
%A Samy Gallego
%A Florian Méhats
%T An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit
%J Comptes Rendus. Mathématique
%D 2007
%P 531-536
%V 345
%N 9
%I Elsevier
%R 10.1016/j.crma.2007.10.014
%G en
%F CRMATH_2007__345_9_531_0
Pierre Degond; Samy Gallego; Florian Méhats. An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 531-536. doi : 10.1016/j.crma.2007.10.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.014/

[1] W. Bao; S. Jin; P.A. Markowich On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., Volume 175 (2002), pp. 487-524

[2] E.R. Bittner Quantum tunneling dynamics using hydrodynamic trajectories, J. Chem. Phys., Volume 112 (2000) no. 22, pp. 9703-9710

[3] G.-Q. Chen; H. Liu Formation of δ-schocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations, SIAM J. Math. Anal., Volume 34 (2003), pp. 925-938

[4] C.L. Lopreore; R.E. Wyatt Quantum wave packet dynamics with trajectories, Phys. Rev., Volume 82 (1999) no. 26, pp. 5190-5193

[5] E. Madelung Quanten theorie in Hydrodynamischer Form, Z. Physik, Volume 40 (1927), p. 322

[6] P.A. Markowich; P. Pietra; C. Pohl Numerical approximation of quadratic observables of Schrödinger type equations in the semi-classical limit, Numer. Math., Volume 81 (1999), pp. 595-630

[7] P.A. Markowich; P. Pietra; C. Pohl; H.P. Stimming A Wigner-measure analysis of the Dufort–Frankel scheme for the Schrödinger equation, SIAM J. Numer. Anal., Volume 40 (2002), pp. 1281-1310

[8] F.S. Mayor; A. Askar; H.A. Rabitz Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems, J. Chem. Phys., Volume 111 (1999) no. 6, pp. 2423-2435

[9] K. Na; R.E. Wyatt Quantum trajectories for resonant scattering, Internat. J. Quantum Chem., Volume 81 (2001) no. 3, pp. 206-213

[10] J.H. Weiner; A. Askar Particle method for numerical solution of the time-dependent Schrödinger equation, J. Chem. Phys., Volume 54 (1971) no. 8, pp. 3534-3541

[11] R.E. Wyatt; C.L. Lopreore; G. Parlant Electronic transitions with quantum trajectories, J. Chem. Phys., Volume 114 (2001) no. 12, pp. 5113-5116

Cited by Sources:

Comments - Policy


Articles of potential interest

Boundary layers in Gross–Pitaevskii superflow around a disk

Chi-Tuong Pham; Caroline Nore; Marc-Étienne Brachet

C. R. Phys (2004)


Insulating oxide surfaces and nanostructures

Jacek Goniakowski; Claudine Noguera

C. R. Phys (2016)


Numerical approximation of a quantum drift-diffusion model

Samy Gallego; Florian Méhats

C. R. Math (2004)