Comptes Rendus
Partial Differential Equations
Nonhomogeneous boundary value problems in anisotropic Sobolev spaces
Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 561-566.

We study the nonlinear boundary value problem i=1N(|uxi|pi(x)2uxi)xi=λ|u|q(x)2u in Ω, u=0 on ∂Ω, where ΩRN (N3) is a bounded domain with smooth boundary, λ is a positive real number, and the continuous functions pi and q satisfy 2pi(x)<N and q(x)>1 for any xΩ¯ and any i{1,,N}. By analyzing the growth of the functions pi and q we prove in this Note several existence results in Sobolev spaces with variable exponents.

On étudie le problème non linéaire i=1N(|uxi|pi(x)2uxi)xi=λ|u|q(x)2u dans Ω, u=0 sur ∂Ω, où ΩRN (N3) est un domaine borné et régulier, λ est un nombre réel positif et pi et q sont des fonctions continues telles que 2pi(x)<N et q(x)>1 pour tout xΩ¯ et chaque i{1,,N}. En étudiant la croissance des fonctions pi et q on obtient dans cette Note plusieurs résultats d'existence dans des espaces de Sobolev aux exposants variables.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.012

Mihai Mihăilescu 1, 2; Patrizia Pucci 3; Vicenţiu Rădulescu 1, 4

1 University of Craiova, Department of Mathematics, 200585 Craiova, Romania
2 Department of Mathematics, Central European University, 1051 Budapest, Hungary
3 Università degli Studi di Perugia, Dipartimento di Matematica e Informatica, 06123 Perugia, Italy
4 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 014700 Bucharest, Romania
@article{CRMATH_2007__345_10_561_0,
     author = {Mihai Mih\u{a}ilescu and Patrizia Pucci and Vicen\c{t}iu R\u{a}dulescu},
     title = {Nonhomogeneous boundary value problems in anisotropic {Sobolev} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {561--566},
     publisher = {Elsevier},
     volume = {345},
     number = {10},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.012},
     language = {en},
}
TY  - JOUR
AU  - Mihai Mihăilescu
AU  - Patrizia Pucci
AU  - Vicenţiu Rădulescu
TI  - Nonhomogeneous boundary value problems in anisotropic Sobolev spaces
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 561
EP  - 566
VL  - 345
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.012
LA  - en
ID  - CRMATH_2007__345_10_561_0
ER  - 
%0 Journal Article
%A Mihai Mihăilescu
%A Patrizia Pucci
%A Vicenţiu Rădulescu
%T Nonhomogeneous boundary value problems in anisotropic Sobolev spaces
%J Comptes Rendus. Mathématique
%D 2007
%P 561-566
%V 345
%N 10
%I Elsevier
%R 10.1016/j.crma.2007.10.012
%G en
%F CRMATH_2007__345_10_561_0
Mihai Mihăilescu; Patrizia Pucci; Vicenţiu Rădulescu. Nonhomogeneous boundary value problems in anisotropic Sobolev spaces. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 561-566. doi : 10.1016/j.crma.2007.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.012/

[1] D.E. Edmunds; J. Lang; A. Nekvinda On Lp(x) norms, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 455 (1999), pp. 219-225

[2] D.E. Edmunds; J. Rákosník Sobolev embedding with variable exponent, Studia Math., Volume 143 (2000), pp. 267-293

[3] I. Fragalà; F. Gazzola; B. Kawohl Existence and nonexistence results for anisotropic quasilinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 21 (2004), pp. 715-734

[4] O. Kováčik; J. Rákosník On spaces Lp(x) and W1,p(x), Czechoslovak Math. J., Volume 41 (1991), pp. 592-618

[5] M. Mihăilescu; V. Rădulescu A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 462 (2006), pp. 2625-2641

[6] M. Mihăilescu; V. Rădulescu On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2929-2937

[7] M. Mihăilescu, P. Pucci, V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., in press, | DOI

[8] J. Musielak Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer, Berlin, 1983

[9] S.M. Nikol'skii On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surveys, Volume 16 (1961), pp. 55-104

[10] M. Struwe Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996

[11] M. Troisi Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., Volume 18 (1969), pp. 3-24

[12] N. Trudinger On embeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473-483

[13] L. Ven'-tuan On embedding theorems for spaces of functions with partial derivatives of various degree of summability, Vestnik Leningrad. Univ., Volume 16 (1961), pp. 23-37

Cited by Sources:

Comments - Policy