In this Note we compute the full homotopy type of the space of symplectic embeddings of the standard ball with capacity into the 4-dimensional rational symplectic manifold where μ belongs to the interval and c is above the critical value .
Dans cette Note, nous calculons le type d'homotopie complet de l'espace des plongements symplectiques de la boule standard de capacité dans la 4-variété rationnelle où μ appartient à l'intervalle et c est plus grand que la valeur critique .
Accepted:
Published online:
Sílvia Anjos 1; François Lalonde 2
@article{CRMATH_2007__345_11_639_0, author = {S{\'\i}lvia Anjos and Fran\c{c}ois Lalonde}, title = {The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {639--642}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.025}, language = {en}, }
Sílvia Anjos; François Lalonde. The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 639-642. doi : 10.1016/j.crma.2007.10.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.025/
[1] Homotopy decomposition of a group of symplectomorphisms of , Topology, Volume 43 (2004), pp. 599-618
[2] The homotopy type of the space of symplectic balls in above the critical value | arXiv
[3] S. Anjos, F. Lalonde, M. Pinsonnault, in preparation
[4] Groupes d'automorphismes et plongements symplectiques de boules dans les variétés rationelles, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 931-934
[5] The topology of the space of symplectic balls in rational 4-manifolds, Duke Math. J., Volume 122 (2004) no. 2, pp. 347-397
[6] M. Pinsonnault, Symplectomorphism groups and embeddings of balls into rational ruled surfaces, Compositio Math., in press
Cited by Sources:
Comments - Policy