[Courbes paramétrées dans les grassmanniennes lagrangiennes]
Les courbes dans les grassmanniennes lagrangiennes apparaissent naturellement lors de l'étude intrinsèque des « équations de Jacobi pour les extremas », associées à des structures géométriques sur les variétés différentielles. Nous fixons des entiers
Curves in Lagrange Grassmannians naturally appear when one studies Jacobi equations for extremals, associated with geometric structures on manifolds. We fix integers
Accepté le :
Publié le :
Igor Zelenko 1 ; Chengbo Li 1
@article{CRMATH_2007__345_11_647_0, author = {Igor Zelenko and Chengbo Li}, title = {Parametrized curves in {Lagrange} {Grassmannians}}, journal = {Comptes Rendus. Math\'ematique}, pages = {647--652}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.034}, language = {en}, }
Igor Zelenko; Chengbo Li. Parametrized curves in Lagrange Grassmannians. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 647-652. doi : 10.1016/j.crma.2007.10.034. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.034/
[1] Geometry of Jacobi curves. I, J. Dynam. Control Systems, Volume 8 (2002) no. 1, pp. 93-140
[2] Complete systems of invariants for rank 1 curves in Lagrange Grassmannians, Differential Geometry and its Applications, Proc. Conf. Prague, August 30–September 3, 2004, Charles University, Prague, 2005, pp. 365-379
- Curvatures and hyperbolic flows for natural mechanical systems in Finsler geometry, Journal of Dynamical and Control Systems, Volume 28 (2022) no. 2, pp. 249-266 | DOI:10.1007/s10883-021-09533-6 | Zbl:1492.53046
- A Comprehensive Introduction to Sub-Riemannian Geometry, 2019 | DOI:10.1017/9781108677325
- On projective and affine equivalence of sub-Riemannian metrics, Geometriae Dedicata, Volume 203 (2019), pp. 279-319 | DOI:10.1007/s10711-019-00437-1 | Zbl:1475.53035
- Riemannian and sub-Riemannian geodesic flows, The Journal of Geometric Analysis, Volume 27 (2017) no. 2, pp. 1260-1273 | DOI:10.1007/s12220-016-9717-8 | Zbl:1380.53037
- Geometry of fanning curves in divisible Grassmannians, Differential Geometry and its Applications, Volume 49 (2016), pp. 447-472 | DOI:10.1016/j.difgeo.2016.10.001 | Zbl:1352.53012
- Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds., Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 1, pp. 303-321 | DOI:10.3934/dcds.2016.36.303 | Zbl:1326.53043
- Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations. I, Mathematische Zeitschrift, Volume 282 (2016) no. 1-2, pp. 99-130 | DOI:10.1007/s00209-015-1534-4 | Zbl:1361.53028
- Bishop and Laplacian comparison theorems on three-dimensional contact sub-Riemannian manifolds with symmetry, The Journal of Geometric Analysis, Volume 25 (2015) no. 1, pp. 512-535 | DOI:10.1007/s12220-013-9437-2 | Zbl:1341.53058
- On curvature-type invariants for natural mechanical systems on sub-Riemannian structures associated with a principle G-bundle, Geometric Control Theory and Sub-Riemannian Geometry, Volume 5 (2014), p. 263 | DOI:10.1007/978-3-319-02132-4_16
- Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds, Mathematische Annalen, Volume 360 (2014) no. 1-2, pp. 209-253 | DOI:10.1007/s00208-014-1034-6 | Zbl:1327.53032
- On geometry of curves of flags of constant type, Central European Journal of Mathematics, Volume 10 (2012) no. 5, pp. 1836-1871 | DOI:10.2478/s11533-012-0078-7 | Zbl:1262.53013
- Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries, Journal of Geometry and Physics, Volume 61 (2011) no. 4, pp. 781-807 | DOI:10.1016/j.geomphys.2010.12.009 | Zbl:1216.53039
- Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differential Geometry and its Applications, Volume 27 (2009) no. 6, pp. 723-742 | DOI:10.1016/j.difgeo.2009.07.002 | Zbl:1177.53020
Cité par 13 documents. Sources : Crossref, zbMATH
Commentaires - Politique