[Lois de conservation hyperboliques sur les variétés à faible régularité]
Nous proposons une formulation du problème de Cauchy avec conditions aux limites pour les lois de conservation hyperboliques nonlinéaires posées sur une variété différentiable munie d'une forme volume, avec ou sans bord ; notre étude couvre, en particulier, le cas important des variété Lorentzienne. Nous supposons une régularité limitée sur la géometrie de la variété. Pour ce problème nous démontrons l'existence et l'unicité d'un semi-groupe de solutions faibles satisfaisant à des conditions d'entropie et à des conditions aux limites convenablement définies.
We introduce a formulation of the initial and boundary value problem for nonlinear hyperbolic conservation laws posed on a differential manifold endowed with a volume form, possibly with a boundary; in particular, this includes the important case of Lorentzian manifolds. Only limited regularity is assumed on the geometry of the manifold. For this problem, we establish the existence and uniqueness of an semi-group of weak solutions satisfying suitable entropy and boundary conditions.
Accepté le :
Publié le :
Philippe G. LeFloch 1 ; Baver Okutmustur 1
@article{CRMATH_2008__346_9-10_539_0, author = {Philippe G. LeFloch and Baver Okutmustur}, title = {Hyperbolic conservation laws on manifolds with limited regularity}, journal = {Comptes Rendus. Math\'ematique}, pages = {539--543}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.017}, language = {en}, }
TY - JOUR AU - Philippe G. LeFloch AU - Baver Okutmustur TI - Hyperbolic conservation laws on manifolds with limited regularity JO - Comptes Rendus. Mathématique PY - 2008 SP - 539 EP - 543 VL - 346 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2008.03.017 LA - en ID - CRMATH_2008__346_9-10_539_0 ER -
Philippe G. LeFloch; Baver Okutmustur. Hyperbolic conservation laws on manifolds with limited regularity. Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 539-543. doi : 10.1016/j.crma.2008.03.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.03.017/
[1] Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method, Meth. Appl. Anal., Volume 12 (2005), pp. 291-324
[2] P. Amorim, P.G. LeFloch, B. Okutmustur, Finite volume schemes on Lorentzian manifolds, 2007, submitted for publication
[3] The well-posedness theory for geometry compatible hyperbolic conservation laws on manifolds, Ann. Inst. H. Poincaré Anal. Nonlinéaire, Volume 24 (2007), pp. 989-1008
[4] M. Ben-Artzi, J. Falcovitz, P.G. LeFloch, Hyperbolic conservation laws on the sphere. A geometry compatible finite volume scheme, in preparation
[5] Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., Volume 88 (1985), pp. 223-270
[6] Measure-valued solutions and well-posedness of multi-dimensional conservation laws in a bounded domain, Portugal. Math., Volume 58 (2001), pp. 171-194
[7] First-order quasilinear equations with several space variables, Math. USSR Sb., Volume 10 (1970), pp. 217-243
[8] P.G. LeFloch, Hyperbolic conservation laws and spacetimes with limited regularity, in: Proc. Inter. Conf. on Hyper. Problems: Theory, Numerics, and Application, July 2006, Lyon, France
[9] P.G. LeFloch, B. Okutmustur, in preparation
[10] On the Cauchy problem for a first-order quasilinear equation on a manifold, Differential Equations, Volume 33 (1997), pp. 257-266
[11] Measure-valued solutions of scalar conservation laws with boundary conditions, Arch. Rational Mech. Anal., Volume 107 (1989), pp. 181-193
Cité par Sources :
Commentaires - Politique