[Points de torsion et familles de courbes elliptiques]
We prove that there are at most finitely many complex
Comme cas très spécial de certaines conjectures générales sur l'intersection d'une variété algébrique avec la réunion des sous-schémas de dimension fixée d'un schéma semi-abélien, nous montrons qu'il n'existe qu'un nombre fini de
Accepté le :
Publié le :
David Masser 1 ; Umberto Zannier 2
@article{CRMATH_2008__346_9-10_491_0, author = {David Masser and Umberto Zannier}, title = {Torsion anomalous points and families of elliptic curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {491--494}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.024}, language = {en}, }
David Masser; Umberto Zannier. Torsion anomalous points and families of elliptic curves. Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 491-494. doi : 10.1016/j.crma.2008.03.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.03.024/
[1] Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Notices, Volume 20 (1999), pp. 1119-1140
[2] The number of integral points on arcs and ovals, Duke Math. J., Volume 59 (1989), pp. 337-357
[3] Points de petite hauteur sur les courbes elliptiques, J. Number Theory, Volume 64 (1997), pp. 104-129
[4] Elliptic Curves, Springer-Verlag, 1987
[5] Small values of the quadratic part of the Néron–Tate height on an abelian variety, Compositio Math., Volume 53 (1984), pp. 153-170
[6] Specializations of finitely generated subgroups of abelian varieties, Trans. Amer. Math. Soc., Volume 311 (1989), pp. 413-424
[7] Counting points of small height on elliptic curves, Bull. Soc. Math. France, Volume 117 (1989), pp. 247-265
[8] Integer points on the dilation of a subanalytic surface, Quart. J. Math., Volume 55 (2004), pp. 207-223
[9] The rational points of a definable set, Duke Math. J., Volume 33 (2006), pp. 591-616
[10] J. Pila, U. Zannier, Rational points in periodic analytic sets and the Manin–Mumford conjecture, Rend. Lincei Mat. Appl. (RML), in press
[11] R. Pink, A common generalization of the conjectures of André–Oort, Manin–Mumford, and Mordell–Lang, manuscript dated 17th April 2005 (13 pages)
[12] Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983), pp. 197-211
[13] Exponential sums equations and the Schanuel conjecture, J. London Math. Soc., Volume 65 (2002), pp. 27-44
- Degeneracy loci in the universal family of Abelian varieties, Journal of Number Theory, Volume 270 (2025), p. 96 | DOI:10.1016/j.jnt.2024.05.015
- Greatest common divisor results on semiabelian varieties and a conjecture of Silverman, Research in Number Theory, Volume 10 (2024) no. 1 | DOI:10.1007/s40993-023-00494-2
- Unlikely intersections in families of abelian varieties and the polynomial Pell equation, Proceedings of the London Mathematical Society, Volume 120 (2020) no. 2, p. 192 | DOI:10.1112/plms.12289
- CM RELATIONS IN FIBERED POWERS OF ELLIPTIC FAMILIES, Journal of the Institute of Mathematics of Jussieu, Volume 18 (2019) no. 5, p. 941 | DOI:10.1017/s1474748017000287
- Dynamical moduli spaces and elliptic curves, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 27 (2018) no. 2, p. 389 | DOI:10.5802/afst.1573
- Simultaneous Torsion in the Legendre Family, Experimental Mathematics, Volume 26 (2017) no. 4, p. 446 | DOI:10.1080/10586458.2016.1201443
- Unlikely intersections in products of families of elliptic curves and the multiplicative group, The Quarterly Journal of Mathematics, Volume 68 (2017) no. 4, p. 1117 | DOI:10.1093/qmath/hax014
- Linear relations in families of powers of elliptic curves, Algebra Number Theory, Volume 10 (2016) no. 1, p. 195 | DOI:10.2140/ant.2016.10.195
- Some examples toward a Manin-Mumford conjecture for abelian uniformizable T-modules, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 25 (2016) no. 1, p. 171 | DOI:10.5802/afst.1491
- Unlikely Intersection for Two-Parameter Families of Polynomials, International Mathematics Research Notices, Volume 2016 (2016) no. 24, p. 7589 | DOI:10.1093/imrn/rnw006
- Impossible intersections in a Weierstrass family of elliptic curves, Journal of Number Theory, Volume 169 (2016), p. 21 | DOI:10.1016/j.jnt.2016.05.003
- Preperiodic points for families of rational maps, Proceedings of the London Mathematical Society, Volume 110 (2015) no. 2, p. 395 | DOI:10.1112/plms/pdu051
- Torsion points on families of products of elliptic curves, Advances in Mathematics, Volume 259 (2014), p. 116 | DOI:10.1016/j.aim.2014.03.016
- Counting Lattice Points and O-Minimal Structures, International Mathematics Research Notices, Volume 2014 (2014) no. 18, p. 4932 | DOI:10.1093/imrn/rnt102
- Unlikely Intersections and Pell’s Equations in Polynomials, Trends in Contemporary Mathematics, Volume 8 (2014), p. 151 | DOI:10.1007/978-3-319-05254-0_12
- Preperiodic points for families of polynomials, Algebra Number Theory, Volume 7 (2013) no. 3, p. 701 | DOI:10.2140/ant.2013.7.701
- An effective result of André-Oort type, Annals of Mathematics, Volume 176 (2012) no. 1, p. 651 | DOI:10.4007/annals.2012.176.1.13
- Torsion points on families of squares of elliptic curves, Mathematische Annalen, Volume 352 (2012) no. 2, p. 453 | DOI:10.1007/s00208-011-0645-4
- Preperiodic points and unlikely intersections, Duke Mathematical Journal, Volume 159 (2011) no. 1 | DOI:10.1215/00127094-1384773
- Preimages of quadratic dynamical systems, Involve, a Journal of Mathematics, Volume 4 (2011) no. 4, p. 343 | DOI:10.2140/involve.2011.4.343
- Rational Points of Definable Sets and Results of Andre-Oort-Manin-Mumford type, International Mathematics Research Notices (2009) | DOI:10.1093/imrn/rnp022
Cité par 21 documents. Sources : Crossref
Commentaires - Politique