We prove that there are at most finitely many complex such that two points on the Legendre elliptic curve with coordinates and both have finite order. This is a very special case of some well-known conjectures on unlikely intersections with varying semiabelian varieties.
Comme cas très spécial de certaines conjectures générales sur l'intersection d'une variété algébrique avec la réunion des sous-schémas de dimension fixée d'un schéma semi-abélien, nous montrons qu'il n'existe qu'un nombre fini de tels que les quatre points de la courbe elliptique avec et soient d'ordre fini.
Accepted:
Published online:
David Masser 1; Umberto Zannier 2
@article{CRMATH_2008__346_9-10_491_0, author = {David Masser and Umberto Zannier}, title = {Torsion anomalous points and families of elliptic curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {491--494}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.024}, language = {en}, }
David Masser; Umberto Zannier. Torsion anomalous points and families of elliptic curves. Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 491-494. doi : 10.1016/j.crma.2008.03.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.03.024/
[1] Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Notices, Volume 20 (1999), pp. 1119-1140
[2] The number of integral points on arcs and ovals, Duke Math. J., Volume 59 (1989), pp. 337-357
[3] Points de petite hauteur sur les courbes elliptiques, J. Number Theory, Volume 64 (1997), pp. 104-129
[4] Elliptic Curves, Springer-Verlag, 1987
[5] Small values of the quadratic part of the Néron–Tate height on an abelian variety, Compositio Math., Volume 53 (1984), pp. 153-170
[6] Specializations of finitely generated subgroups of abelian varieties, Trans. Amer. Math. Soc., Volume 311 (1989), pp. 413-424
[7] Counting points of small height on elliptic curves, Bull. Soc. Math. France, Volume 117 (1989), pp. 247-265
[8] Integer points on the dilation of a subanalytic surface, Quart. J. Math., Volume 55 (2004), pp. 207-223
[9] The rational points of a definable set, Duke Math. J., Volume 33 (2006), pp. 591-616
[10] J. Pila, U. Zannier, Rational points in periodic analytic sets and the Manin–Mumford conjecture, Rend. Lincei Mat. Appl. (RML), in press
[11] R. Pink, A common generalization of the conjectures of André–Oort, Manin–Mumford, and Mordell–Lang, manuscript dated 17th April 2005 (13 pages)
[12] Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983), pp. 197-211
[13] Exponential sums equations and the Schanuel conjecture, J. London Math. Soc., Volume 65 (2002), pp. 27-44
Cited by Sources:
Comments - Policy