Comptes Rendus
Number Theory
Torsion anomalous points and families of elliptic curves
[Points de torsion et familles de courbes elliptiques]
Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 491-494.

We prove that there are at most finitely many complex λ0,1 such that two points on the Legendre elliptic curve Y2=X(X1)(Xλ) with coordinates X=2 and X=3 both have finite order. This is a very special case of some well-known conjectures on unlikely intersections with varying semiabelian varieties.

Comme cas très spécial de certaines conjectures générales sur l'intersection d'une variété algébrique avec la réunion des sous-schémas de dimension fixée d'un schéma semi-abélien, nous montrons qu'il n'existe qu'un nombre fini de λC{0,1} tels que les quatre points de la courbe elliptique Y2=X(X1)(Xλ) avec X=2 et X=3 soient d'ordre fini.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.03.024

David Masser 1 ; Umberto Zannier 2

1 Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland
2 Scuola Normale, Piazza Cavalieri 7, 56126 Pisa, Italy
@article{CRMATH_2008__346_9-10_491_0,
     author = {David Masser and Umberto Zannier},
     title = {Torsion anomalous points and families of elliptic curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {491--494},
     publisher = {Elsevier},
     volume = {346},
     number = {9-10},
     year = {2008},
     doi = {10.1016/j.crma.2008.03.024},
     language = {en},
}
TY  - JOUR
AU  - David Masser
AU  - Umberto Zannier
TI  - Torsion anomalous points and families of elliptic curves
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 491
EP  - 494
VL  - 346
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2008.03.024
LA  - en
ID  - CRMATH_2008__346_9-10_491_0
ER  - 
%0 Journal Article
%A David Masser
%A Umberto Zannier
%T Torsion anomalous points and families of elliptic curves
%J Comptes Rendus. Mathématique
%D 2008
%P 491-494
%V 346
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2008.03.024
%G en
%F CRMATH_2008__346_9-10_491_0
David Masser; Umberto Zannier. Torsion anomalous points and families of elliptic curves. Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 491-494. doi : 10.1016/j.crma.2008.03.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.03.024/

[1] E. Bombieri; D. Masser; U. Zannier Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Notices, Volume 20 (1999), pp. 1119-1140

[2] E. Bombieri; J. Pila The number of integral points on arcs and ovals, Duke Math. J., Volume 59 (1989), pp. 337-357

[3] S. David Points de petite hauteur sur les courbes elliptiques, J. Number Theory, Volume 64 (1997), pp. 104-129

[4] D. Husemöller Elliptic Curves, Springer-Verlag, 1987

[5] D. Masser Small values of the quadratic part of the Néron–Tate height on an abelian variety, Compositio Math., Volume 53 (1984), pp. 153-170

[6] D. Masser Specializations of finitely generated subgroups of abelian varieties, Trans. Amer. Math. Soc., Volume 311 (1989), pp. 413-424

[7] D. Masser Counting points of small height on elliptic curves, Bull. Soc. Math. France, Volume 117 (1989), pp. 247-265

[8] J. Pila Integer points on the dilation of a subanalytic surface, Quart. J. Math., Volume 55 (2004), pp. 207-223

[9] J. Pila; A. Wilkie The rational points of a definable set, Duke Math. J., Volume 33 (2006), pp. 591-616

[10] J. Pila, U. Zannier, Rational points in periodic analytic sets and the Manin–Mumford conjecture, Rend. Lincei Mat. Appl. (RML), in press

[11] R. Pink, A common generalization of the conjectures of André–Oort, Manin–Mumford, and Mordell–Lang, manuscript dated 17th April 2005 (13 pages)

[12] J.H. Silverman Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983), pp. 197-211

[13] B. Zilber Exponential sums equations and the Schanuel conjecture, J. London Math. Soc., Volume 65 (2002), pp. 27-44

  • Ziyang Gao; Philipp Habegger Degeneracy loci in the universal family of Abelian varieties, Journal of Number Theory, Volume 270 (2025), p. 96 | DOI:10.1016/j.jnt.2024.05.015
  • Fabrizio Barroero; Laura Capuano; Amos Turchet Greatest common divisor results on semiabelian varieties and a conjecture of Silverman, Research in Number Theory, Volume 10 (2024) no. 1 | DOI:10.1007/s40993-023-00494-2
  • F. Barroero; L. Capuano Unlikely intersections in families of abelian varieties and the polynomial Pell equation, Proceedings of the London Mathematical Society, Volume 120 (2020) no. 2, p. 192 | DOI:10.1112/plms.12289
  • Fabrizio Barroero CM RELATIONS IN FIBERED POWERS OF ELLIPTIC FAMILIES, Journal of the Institute of Mathematics of Jussieu, Volume 18 (2019) no. 5, p. 941 | DOI:10.1017/s1474748017000287
  • Laura De Marco Dynamical moduli spaces and elliptic curves, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 27 (2018) no. 2, p. 389 | DOI:10.5802/afst.1573
  • Michael Stoll Simultaneous Torsion in the Legendre Family, Experimental Mathematics, Volume 26 (2017) no. 4, p. 446 | DOI:10.1080/10586458.2016.1201443
  • Fabrizio Barroero; Laura Capuano Unlikely intersections in products of families of elliptic curves and the multiplicative group, The Quarterly Journal of Mathematics, Volume 68 (2017) no. 4, p. 1117 | DOI:10.1093/qmath/hax014
  • Fabrizio Barroero; Laura Capuano Linear relations in families of powers of elliptic curves, Algebra Number Theory, Volume 10 (2016) no. 1, p. 195 | DOI:10.2140/ant.2016.10.195
  • Luca Demangos Some examples toward a Manin-Mumford conjecture for abelian uniformizable T-modules, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 25 (2016) no. 1, p. 171 | DOI:10.5802/afst.1491
  • Dragos Ghioca; Liang-Chung Hsia; Thomas J. Tucker Unlikely Intersection for Two-Parameter Families of Polynomials, International Mathematics Research Notices, Volume 2016 (2016) no. 24, p. 7589 | DOI:10.1093/imrn/rnw006
  • Niki Myrto Mavraki Impossible intersections in a Weierstrass family of elliptic curves, Journal of Number Theory, Volume 169 (2016), p. 21 | DOI:10.1016/j.jnt.2016.05.003
  • D. Ghioca; L.-C. Hsia; T. J. Tucker Preperiodic points for families of rational maps, Proceedings of the London Mathematical Society, Volume 110 (2015) no. 2, p. 395 | DOI:10.1112/plms/pdu051
  • D. Masser; U. Zannier Torsion points on families of products of elliptic curves, Advances in Mathematics, Volume 259 (2014), p. 116 | DOI:10.1016/j.aim.2014.03.016
  • Fabrizio Barroero; Martin Widmer Counting Lattice Points and O-Minimal Structures, International Mathematics Research Notices, Volume 2014 (2014) no. 18, p. 4932 | DOI:10.1093/imrn/rnt102
  • Umberto Zannier Unlikely Intersections and Pell’s Equations in Polynomials, Trends in Contemporary Mathematics, Volume 8 (2014), p. 151 | DOI:10.1007/978-3-319-05254-0_12
  • Dragos Ghioca; Liang-Chung Hsia; Thomas Tucker Preperiodic points for families of polynomials, Algebra Number Theory, Volume 7 (2013) no. 3, p. 701 | DOI:10.2140/ant.2013.7.701
  • Lars Kühne An effective result of André-Oort type, Annals of Mathematics, Volume 176 (2012) no. 1, p. 651 | DOI:10.4007/annals.2012.176.1.13
  • D. Masser; U. Zannier Torsion points on families of squares of elliptic curves, Mathematische Annalen, Volume 352 (2012) no. 2, p. 453 | DOI:10.1007/s00208-011-0645-4
  • Matthew Baker; Laura Demarco Preperiodic points and unlikely intersections, Duke Mathematical Journal, Volume 159 (2011) no. 1 | DOI:10.1215/00127094-1384773
  • Benjamin Hutz; Trevor Hyde; Benjamin Krause Preimages of quadratic dynamical systems, Involve, a Journal of Mathematics, Volume 4 (2011) no. 4, p. 343 | DOI:10.2140/involve.2011.4.343
  • J. Pila Rational Points of Definable Sets and Results of Andre-Oort-Manin-Mumford type, International Mathematics Research Notices (2009) | DOI:10.1093/imrn/rnp022

Cité par 21 documents. Sources : Crossref

Commentaires - Politique