In this Note, we find all positive integers n such that is a binary palindome. Our proof uses lower bounds for linear forms in logarithms of rational numbers.
Dans cette Note, nous trouvons tous les entiers positifs n tels que soit un palindrome binaire. Notre démontration utilise les minorations de formes linéaires en logarithmes de nombres rationnels.
Accepted:
Published online:
Florian Luca 1; Alain Togbé 2
@article{CRMATH_2008__346_9-10_487_0, author = {Florian Luca and Alain Togb\'e}, title = {On binary palindromes of the form $ {10}^{n}\pm 1$}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--489}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.015}, language = {en}, }
Florian Luca; Alain Togbé. On binary palindromes of the form $ {10}^{n}\pm 1$. Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 487-489. doi : 10.1016/j.crma.2008.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.03.015/
[1] More on palindromic squares, J. Recreational Math., Volume 22 (1990), pp. 133-135
[2] Almost all palindromes are composite, Math. Res. Lett., Volume 11 (2004), pp. 853-868
[3] Prime divisors of palindromes, Period. Math. Hungar., Volume 51 (2005), pp. 1-10
[4] Classification and enumeration of palindromic squares, J. Recreational Math., Volume 22 (1990), pp. 124-132
[5] Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory, Volume 55 (1995), pp. 285-321
[6] Palindromes in Lucas sequences, Monatsh. Math., Volume 138 (2003), pp. 209-223
Cited by Sources:
⁎ Work by the first author was done in the Summer of 2007 when he visited the School of Mathematics of the Tata Institute in Mumbai, India. He thanks the host institution for its hospitality and the Third World Academy of Sciences for support. The second author was partially supported by Purdue University North Central.
Comments - Policy