We apply the theory of the derived category of exact categories to the category of Banach modules over the discrete group G. Since there are enough injectives in , right derived functors exist. The heart of the canonical t-structure on the derived category is equivalent to Waelbroeck's Abelian category qBan of quotient Banach spaces. The right derived functor of the functor “submodule of G-invariant vectors” yields a universal δ-functor with values in qBan which allows us to reconstruct the bounded cohomology functors in the sense of Gromov–Brooks–Ivanov–Noskov.
Nous appliquons la théorie des catégories dérivées des catégories exactes à la catégorie des modules de Banach du groupe discret G. Comme il y a assez d'injectifs dans , les foncteurs dérivés à droite existent. Le cœur de la t-structure canonique dans la catégorie dérivée est équivalent à la catégorie abélienne qBan des espaces quotients banachiques au sens de Waelbroeck. En dérivant à droite le foncteur « sous-module des vecteurs G-invariants », nous obtenons un δ-foncteur universel à valeurs dans qBan, ce qui nous permet de reconstruire le foncteur de cohomologie bornée au sens de Gromov–Brooks–Ivanov–Noskov.
Accepted:
Published online:
Theo Bühler 1
@article{CRMATH_2008__346_11-12_615_0, author = {Theo B\"uhler}, title = {A derived functor approach to bounded cohomology}, journal = {Comptes Rendus. Math\'ematique}, pages = {615--618}, publisher = {Elsevier}, volume = {346}, number = {11-12}, year = {2008}, doi = {10.1016/j.crma.2008.04.003}, language = {en}, }
Theo Bühler. A derived functor approach to bounded cohomology. Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 615-618. doi : 10.1016/j.crma.2008.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.04.003/
[1] Faisceaux pervers, Luminy, 1981 (Astérisque), Volume vol. 100, Soc. Math. France, Paris (1982), pp. 5-171 MR751966 (86g:32015)
[2] Some remarks on bounded cohomology, State Univ. New York, Stony Brook, NY, 1978 (Ann. of Math. Stud.), Volume vol. 97, Princeton Univ. Press, Princeton, NJ (1981), pp. 53-63 MR624804 (83a:57038)
[3] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math., Volume 56 (1982), pp. 5-99 MR686042 (84h:53053)
[4] Cohomology of Lie groups, Illinois J. Math., Volume 6 (1962), pp. 367-401 MR0147577 (26 #5092)
[5] Foundations of the theory of bounded cohomology, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 143 (1985), pp. 69-109 177–178. MR806562 (87b:53070)
[6] Chain complexes and stable categories, Manuscripta Math., Volume 67 (1990) no. 4, pp. 379-417 MR1052551 (91h:18006)
[7] Derived categories and their uses, Handbook of Algebra, vol. 1, North-Holland, Amsterdam, 1996, pp. 671-701 MR1421815 (98h:18013)
[8] C. Löh, -homology and simplicial volume, Ph.D. thesis, Westfälische Wilhelms-Universität Münster, 2007
[9] The derived category of an exact category, J. Algebra, Volume 135 (1990) no. 2, pp. 388-394 MR1080854 (91m:18016)
[10] Bounded cohomology of discrete groups with coefficients, Algebra i Analiz, Volume 2 (1990) no. 5, pp. 146-164 MR1086449 (92b:57005)
[11] Derived categories for functional analysis, Publ. Res. Inst. Math. Sci., Volume 36 (2000) no. 1, pp. 19-83 MR1749013 (2001g:46156)
[12] Higher algebraic K-theory. I, Battelle Memorial Inst., Seattle, WA, 1972 (Lecture Notes in Math.), Volume vol. 341, Springer, Berlin (1973), pp. 85-147 MR0338129 (49 #2895)
[13] Quasi-abelian categories and sheaves, Mém. Soc. Math. France (N.S.), Volume 76 (1999), p. vi+134 MR1779315 (2001i:18023)
[14] Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247-435 MR1106918 (92f:19001)
[15] L. Waelbroeck, Bornological quotients, Mémoire de la Classe des Sciences. Collection in-4°. 3° Série (Memoir of the Science Section. Collection in-4°. 3rd Series), VII, Académie Royale de Belgique. Classe des Sciences, Brussels, 2005, With the collaboration of Guy Noël. MR2128718 (2006b:46001)
[16] On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I, Volume 8 (1960), pp. 507-576 MR0225854 (37 #1445)
Cited by Sources:
Comments - Policy