For K a field of characteristic 3 we give explicitly the whole family of Galois extensions of K with Galois group and determine the discriminant of such an extension. In the case when K is the field of fractions of a formal power series ring in 3 variables, this result is interesting in the context of Abhyankar's Normal Crossings Local Conjecture.
Pour K un corps de caractéristique 3 nous donnons explicitement la famille complète d'extensions de K à groupe de Galois et déterminons le discriminant d'une telle extension. Dans le cas où K est le corps de fractions d'un anneau de séries de puissances formelles en 3 variables, ce résultat est intéressant dans le contexte de la Conjecture Locale de Croisements Normaux d'Abhyankar.
Accepted:
Published online:
Teresa Crespo 1; Zbigniew Hajto 2
@article{CRMATH_2008__346_11-12_611_0, author = {Teresa Crespo and Zbigniew Hajto}, title = {Extensions with {Galois} group $ {2}^{+}{S}_{4}\ast {D}_{8}$ in characteristic 3}, journal = {Comptes Rendus. Math\'ematique}, pages = {611--614}, publisher = {Elsevier}, volume = {346}, number = {11-12}, year = {2008}, doi = {10.1016/j.crma.2008.04.010}, language = {en}, }
TY - JOUR AU - Teresa Crespo AU - Zbigniew Hajto TI - Extensions with Galois group $ {2}^{+}{S}_{4}\ast {D}_{8}$ in characteristic 3 JO - Comptes Rendus. Mathématique PY - 2008 SP - 611 EP - 614 VL - 346 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2008.04.010 LA - en ID - CRMATH_2008__346_11-12_611_0 ER -
Teresa Crespo; Zbigniew Hajto. Extensions with Galois group $ {2}^{+}{S}_{4}\ast {D}_{8}$ in characteristic 3. Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 611-614. doi : 10.1016/j.crma.2008.04.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.04.010/
[1] Galois embeddings for linear groups, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 3881-3912
[2] Resolution of singularities and modular Galois theory, Bull. Amer. Math. Soc., Volume 38 (2001), pp. 131-169
[3] On vectorial polynomials and coverings in characteristic 3, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 23-29
[4] Valued fields and covers in characteristic p, Fields Inst. Commun., Volume 32 (2002), pp. 175-204
[5] The Algebraic Theory of Quadratic Forms, Benjamin-Cummings Publ. Co., Reading, MA, 1973
Cited by Sources:
Comments - Policy