[Marches au hasard et l'expansion en
Let
Soit
Publié le :
Jean Bourgain 1 ; Alex Gamburd 1
@article{CRMATH_2008__346_11-12_619_0, author = {Jean Bourgain and Alex Gamburd}, title = {Random walks and expansion in $ {\mathrm{SL}}_{d}(\mathbb{Z}/{p}^{n}\mathbb{Z})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {619--623}, publisher = {Elsevier}, volume = {346}, number = {11-12}, year = {2008}, doi = {10.1016/j.crma.2008.04.006}, language = {en}, }
TY - JOUR AU - Jean Bourgain AU - Alex Gamburd TI - Random walks and expansion in $ {\mathrm{SL}}_{d}(\mathbb{Z}/{p}^{n}\mathbb{Z})$ JO - Comptes Rendus. Mathématique PY - 2008 SP - 619 EP - 623 VL - 346 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2008.04.006 LA - en ID - CRMATH_2008__346_11-12_619_0 ER -
Jean Bourgain; Alex Gamburd. Random walks and expansion in $ {\mathrm{SL}}_{d}(\mathbb{Z}/{p}^{n}\mathbb{Z})$. Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 619-623. doi : 10.1016/j.crma.2008.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.04.006/
[1] Products of Random Matrices with Applications to Schrödinger Operators, Progress in Probability and Statistics, vol. 8, Birkhäuser, 1985
[2] J. Bourgain, The sum–product theorem
[3] Uniform expansion bounds for Cayley graphs of
[4] J. Bourgain, A. Gamburd, Expansion and random walks in
[5] J. Bourgain, A. Gamburd, Expansion and random walks in
[6] Sieving and expanders, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 343 (2005), pp. 155-159
[7] J. Bourgain, A. Gamburd, P. Sarnak, Affine linear sieve, expanders, and sum–product, preprint
[8] Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems, Volume 10 (1990), pp. 483-512
[9] Growth and generation in
[10] Heegaard genus and property ‘tau’ for hyperbolic 3-manifolds, J. Topol., Volume 1 (2008) no. 1, pp. 152-158
[11] Bounds for multiplicities of automorphic representations, Duke Math. J., Volume 64 (1991), pp. 207-227
[12] T. Tao, Product sets estimates for non-commutative groups, Combinatorica, in press
- Arithmetic and dynamics on varieties of Markoff type, International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 3. Sections 1–4, Berlin: European Mathematical Society (EMS), 2023, pp. 1800-1836 | DOI:10.4171/icm2022/191 | Zbl:1551.14103
- Strong approximation in random towers of graphs., Combinatorica, Volume 34 (2014) no. 2, pp. 139-171 | DOI:10.1007/s00493-014-2620-7 | Zbl:1349.20031
Cité par 2 documents. Sources : zbMATH
Commentaires - Politique