In this Note, we determine all the totally positive integers of which cannot be represented as sums of distinct integral squares.
Nous déterminons tous les entiers totalement positifs qui ne peuvent pas être représentés comme des sommes de carrés distincts d'entiers dans .
Accepted:
Published online:
Poo-Sung Park 1
@article{CRMATH_2008__346_13-14_723_0, author = {Poo-Sung Park}, title = {Sums of distinct integral squares in $ \mathbb{Q}(\sqrt{5})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {723--725}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.008}, language = {en}, }
Poo-Sung Park. Sums of distinct integral squares in $ \mathbb{Q}(\sqrt{5})$. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 723-725. doi : 10.1016/j.crma.2008.05.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.008/
[1] Über eine zahlentheoretische Anwendung von Modulfunktionen einer Veränderlichen, Math. Ann., Volume 100 (1928), pp. 411-437
[2] On nonvanishing sum of integral squares of , Kangweon-Kyungki Math. J., Volume 6 (1998) no. 2, pp. 299-302
[3] Über die Darstellung total positiver Zahlen des Körpers als Summe von drei Quadraten, Abh. Math. Sem. Hansischen Univ., Volume 14 (1941), pp. 185-191
[4] Sums of mth powers of algebraic integers, Ann. of Math., Volume 46 (1945), pp. 313-339 (Ges. Abh. III, pp. 12–46)
[5] Über Zerlegungen in ungleiche Quadratzahlen, Math. Z., Volume 51 (1949), pp. 289-290
Cited by Sources:
Comments - Policy