[Sur la périodicité d'une fonction arithmétique]
Let
Soit
Accepté le :
Publié le :
Shaofang Hong 1 ; Yujuan Yang 1
@article{CRMATH_2008__346_13-14_717_0, author = {Shaofang Hong and Yujuan Yang}, title = {On the periodicity of an arithmetical function}, journal = {Comptes Rendus. Math\'ematique}, pages = {717--721}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.019}, language = {en}, }
Shaofang Hong; Yujuan Yang. On the periodicity of an arithmetical function. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 717-721. doi : 10.1016/j.crma.2008.05.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.019/
[1] Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976
[2] On divisibility properties of certain multinomial coefficients II, J. Number Theory, Volume 106 (2004), pp. 1-12
[3] Minoration non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 469-474
[4] Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory, Volume 125 (2007), pp. 393-411
[5] The primes contain arbitrarily long arithmetic progression, Ann. of Math. (2), Volume 167 (2008), pp. 481-548
[6] On the product of the primes, Canad. Math. Bull., Volume 15 (1972), pp. 33-37
[7] An Introduction to the Theory of Numbers, Oxford University Press, London, 1960
[8] Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 695-698
[9] Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasgow Math. J., Volume 46 (2004), pp. 551-569
[10] S. Hong, Y. Yang, Improvements of lower bounds for the least common multiple of finite arithmetic progressions, Proc. Amer. Math. Soc., in press
[11] What the least common multiple divides II, J. Number Theory, Volume 61 (1996), pp. 67-84
[12] On Chebyshev-type inequalities for primes, Amer. Math. Monthly, Volume 89 (1982), pp. 126-129
- Coordinating Amoebots via Reconfigurable Circuits, Journal of Computational Biology, Volume 29 (2022) no. 4, p. 317 | DOI:10.1089/cmb.2021.0363
- Further Results on a Curious Arithmetic Function, Journal of Mathematics, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/1894162
- New lower bounds for the least common multiple of polynomial sequences, Journal of Number Theory, Volume 175 (2017), p. 191 | DOI:10.1016/j.jnt.2016.11.026
- On the lcm-analog of binomial coefficient, Asian-European Journal of Mathematics, Volume 07 (2014) no. 04, p. 1450056 | DOI:10.1142/s1793557114500569
- Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms, Archiv der Mathematik, Volume 100 (2013) no. 4, p. 337 | DOI:10.1007/s00013-013-0510-7
- New lower bounds for the least common multiples of arithmetic progressions, Chinese Annals of Mathematics, Series B, Volume 34 (2013) no. 6, p. 861 | DOI:10.1007/s11401-013-0805-9
- On the periodicity of a class of arithmetic functions associated with multiplicative functions, Journal of Number Theory, Volume 133 (2013) no. 6, p. 2005 | DOI:10.1016/j.jnt.2012.11.010
- Photonic-assisted multi-channel compressive sampling based on effective time delay pattern, Optics Express, Volume 21 (2013) no. 22, p. 25700 | DOI:10.1364/oe.21.025700
- The least common multiple of a sequence of products of linear polynomials, Acta Mathematica Hungarica, Volume 135 (2012) no. 1-2, p. 160 | DOI:10.1007/s10474-011-0173-4
- THE LEAST COMMON MULTIPLE OF CONSECUTIVE TERMS IN A QUADRATIC PROGRESSION, Bulletin of the Australian Mathematical Society, Volume 86 (2012) no. 3, p. 389 | DOI:10.1017/s0004972712000202
- NOTES ON A CURIOUS ARITHMETIC FUNCTION, Asian-European Journal of Mathematics, Volume 04 (2011) no. 04, p. 705 | DOI:10.1142/s1793557111000587
- The least common multiple of consecutive arithmetic progression terms, Proceedings of the Edinburgh Mathematical Society, Volume 54 (2011) no. 2, p. 431 | DOI:10.1017/s0013091509000431
- Further improvements of lower bounds for the least common multiples of arithmetic progressions, Proceedings of the American Mathematical Society, Volume 138 (2009) no. 3, p. 809 | DOI:10.1090/s0002-9939-09-10083-7
- New results on the least common multiple of consecutive integers, Proceedings of the American Mathematical Society, Volume 137 (2008) no. 6, p. 1933 | DOI:10.1090/s0002-9939-08-09730-x
Cité par 14 documents. Sources : Crossref
⁎ This work was supported partially by Program for New Century Excellent Talents in University Grant # NCET-06-0785.
Commentaires - Politique