Comptes Rendus
Number Theory
On the periodicity of an arithmetical function
Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 717-721.

Let k0 be an integer. When studying the least common multiple of k+1 consecutive integers, Farhi introduced the arithmetical function gk defined for any positive integer n by gk(n):=n(n+1)(n+k)lcm(n,n+1,,n+k). Farhi proved that gk is periodic and k! is a period of gk. Meanwhile Farhi raised an open problem determining the smallest positive period of gk. In this Note, we first show that gk(1)|gk(n) for all positive integers n. Consequently, using this result, we show that for all positive integers k, lcm(1,2,,k) is a period of gk, thus improving Farhi's result.

Soit k0 un entier, en étudiant le plus petit commun multiple de k+1 entiers consécutifs Farhi a introduit la fonction arithmétique définie par gk(n):=n(n+1)(n+k)ppcm(n,n+1,,n+k) pour n entier positif. Farhi a démontré que gk est périodique et que k! en est une période. Dans le même temps Farhi a posé la question de déterminer la plus petite période de gk. Dans cette Note, nous démontrons pour commencer gk(1)|gk(n) pour tout entier positif n. Puis, utilisant ce résultat, nous montrons que ppcm(1,2,,k) est une période de gk pour tout entier positif k, ce qui améliore le résultat de Farhi.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.05.019

Shaofang Hong 1; Yujuan Yang 1

1 Mathematical College, Sichuan University, Chengdu 610064, PR China
@article{CRMATH_2008__346_13-14_717_0,
     author = {Shaofang Hong and Yujuan Yang},
     title = {On the periodicity of an arithmetical function},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {717--721},
     publisher = {Elsevier},
     volume = {346},
     number = {13-14},
     year = {2008},
     doi = {10.1016/j.crma.2008.05.019},
     language = {en},
}
TY  - JOUR
AU  - Shaofang Hong
AU  - Yujuan Yang
TI  - On the periodicity of an arithmetical function
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 717
EP  - 721
VL  - 346
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2008.05.019
LA  - en
ID  - CRMATH_2008__346_13-14_717_0
ER  - 
%0 Journal Article
%A Shaofang Hong
%A Yujuan Yang
%T On the periodicity of an arithmetical function
%J Comptes Rendus. Mathématique
%D 2008
%P 717-721
%V 346
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2008.05.019
%G en
%F CRMATH_2008__346_13-14_717_0
Shaofang Hong; Yujuan Yang. On the periodicity of an arithmetical function. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 717-721. doi : 10.1016/j.crma.2008.05.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.019/

[1] T.M. Apostol Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976

[2] G. Bachman; T. Kessler On divisibility properties of certain multinomial coefficients II, J. Number Theory, Volume 106 (2004), pp. 1-12

[3] B. Farhi Minoration non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 469-474

[4] B. Farhi Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory, Volume 125 (2007), pp. 393-411

[5] B. Green; T. Tao The primes contain arbitrarily long arithmetic progression, Ann. of Math. (2), Volume 167 (2008), pp. 481-548

[6] D. Hanson On the product of the primes, Canad. Math. Bull., Volume 15 (1972), pp. 33-37

[7] G.H. Hardy; E.M. Wright An Introduction to the Theory of Numbers, Oxford University Press, London, 1960

[8] S. Hong; W. Feng Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 695-698

[9] S. Hong; R. Loewy Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasgow Math. J., Volume 46 (2004), pp. 551-569

[10] S. Hong, Y. Yang, Improvements of lower bounds for the least common multiple of finite arithmetic progressions, Proc. Amer. Math. Soc., in press

[11] G. Myerson; J. Sander What the least common multiple divides II, J. Number Theory, Volume 61 (1996), pp. 67-84

[12] M. Nair On Chebyshev-type inequalities for primes, Amer. Math. Monthly, Volume 89 (1982), pp. 126-129

Cited by Sources:

This work was supported partially by Program for New Century Excellent Talents in University Grant # NCET-06-0785.

Comments - Policy