Let be an integer. When studying the least common multiple of consecutive integers, Farhi introduced the arithmetical function defined for any positive integer n by . Farhi proved that is periodic and k! is a period of . Meanwhile Farhi raised an open problem determining the smallest positive period of . In this Note, we first show that for all positive integers n. Consequently, using this result, we show that for all positive integers k, is a period of , thus improving Farhi's result.
Soit un entier, en étudiant le plus petit commun multiple de entiers consécutifs Farhi a introduit la fonction arithmétique définie par pour n entier positif. Farhi a démontré que est périodique et que k! en est une période. Dans le même temps Farhi a posé la question de déterminer la plus petite période de . Dans cette Note, nous démontrons pour commencer pour tout entier positif n. Puis, utilisant ce résultat, nous montrons que est une période de pour tout entier positif k, ce qui améliore le résultat de Farhi.
Accepted:
Published online:
Shaofang Hong 1; Yujuan Yang 1
@article{CRMATH_2008__346_13-14_717_0, author = {Shaofang Hong and Yujuan Yang}, title = {On the periodicity of an arithmetical function}, journal = {Comptes Rendus. Math\'ematique}, pages = {717--721}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.019}, language = {en}, }
Shaofang Hong; Yujuan Yang. On the periodicity of an arithmetical function. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 717-721. doi : 10.1016/j.crma.2008.05.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.019/
[1] Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976
[2] On divisibility properties of certain multinomial coefficients II, J. Number Theory, Volume 106 (2004), pp. 1-12
[3] Minoration non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 469-474
[4] Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory, Volume 125 (2007), pp. 393-411
[5] The primes contain arbitrarily long arithmetic progression, Ann. of Math. (2), Volume 167 (2008), pp. 481-548
[6] On the product of the primes, Canad. Math. Bull., Volume 15 (1972), pp. 33-37
[7] An Introduction to the Theory of Numbers, Oxford University Press, London, 1960
[8] Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 695-698
[9] Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasgow Math. J., Volume 46 (2004), pp. 551-569
[10] S. Hong, Y. Yang, Improvements of lower bounds for the least common multiple of finite arithmetic progressions, Proc. Amer. Math. Soc., in press
[11] What the least common multiple divides II, J. Number Theory, Volume 61 (1996), pp. 67-84
[12] On Chebyshev-type inequalities for primes, Amer. Math. Monthly, Volume 89 (1982), pp. 126-129
Cited by Sources:
⁎ This work was supported partially by Program for New Century Excellent Talents in University Grant # NCET-06-0785.
Comments - Policy