We prove that, for a polynomial, every bounded Fatou component, with the exception of Siegel disks, has for boundary a Jordan curve.
Nous montrons que le bord de toute composante de Fatou bornée d' un polynôme, hormis les disques de Siegel, est une courbe de Jordan.
Accepted:
Published online:
Pascale Roesch 1; Yongcheng Yin 2
@article{CRMATH_2008__346_15-16_877_0, author = {Pascale Roesch and Yongcheng Yin}, title = {The boundary of bounded polynomial {Fatou} components}, journal = {Comptes Rendus. Math\'ematique}, pages = {877--880}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2008.06.004}, language = {en}, }
Pascale Roesch; Yongcheng Yin. The boundary of bounded polynomial Fatou components. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 877-880. doi : 10.1016/j.crma.2008.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.06.004/
[1] J. Kahn, M. Lyubich, The quasi-additivity law in conformal geometry, Ann. of Math., in press
[2] Real laminations and the topological dynamics of complex polynomials, Adv. Math., Volume 184 (2004), pp. 207-267
[3] Rigidity for real polynomials, Ann. of Math., Volume 165 (2007), pp. 749-841
[4] C.L. Petersen, P. Roesch, Parabotools, manuscript
[5] Proof of the Branner–Hubbard conjecture on Cantor Julia sets (preprint) | arXiv
[6] Cubic polynomials with a parabolic point (preprint) | arXiv
Cited by Sources:
Comments - Policy