In this Note we prove that there exists some integer such that if M is a closed, orientable 3-manifold which is a branched cover of , branched over the figure eight knot with all branching indices equal to a common even integer , then M has a finite index cover which fibers over the circle.
Dans cette Note nous démontrons qu'il existe un entier tel que si M est une 3-variété compacte orientable qui est un revêtement ramifié de , ramifié au-dessus du nœud de huit et dont tous les indices de ramification sont égaux à un même entier pair , alors M possède un revêtement fini qui fibre sur le cercle.
Accepted:
Published online:
Nicolas Bergeron 1
@article{CRMATH_2008__346_19-20_1073_0, author = {Nicolas Bergeron}, title = {Virtual fibering of certain cover of $ {\mathbb{S}}^{3}$, branched over the figure eight knot}, journal = {Comptes Rendus. Math\'ematique}, pages = {1073--1078}, publisher = {Elsevier}, volume = {346}, number = {19-20}, year = {2008}, doi = {10.1016/j.crma.2008.09.014}, language = {en}, }
TY - JOUR AU - Nicolas Bergeron TI - Virtual fibering of certain cover of $ {\mathbb{S}}^{3}$, branched over the figure eight knot JO - Comptes Rendus. Mathématique PY - 2008 SP - 1073 EP - 1078 VL - 346 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2008.09.014 LA - en ID - CRMATH_2008__346_19-20_1073_0 ER -
Nicolas Bergeron. Virtual fibering of certain cover of $ {\mathbb{S}}^{3}$, branched over the figure eight knot. Comptes Rendus. Mathématique, Volume 346 (2008) no. 19-20, pp. 1073-1078. doi : 10.1016/j.crma.2008.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.09.014/
[1] Criteria for virtual fibering (preprint) | arXiv
[2] The virtual -representability of certain 3-manifold groups, Proc. Amer. Math. Soc., Volume 103 (1988), pp. 996-998
[3] Cycles géodésiques transverses dans les variétés hyperboliques, Geom. Funct. Anal., Volume 12 (2002) no. 3, pp. 437-463
[4] N. Bergeron, F. Haglund, D.T. Wise, Hyperplane sections in arithmetic hyperbolic manifolds, submitted for publication
[5] Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 319, Springer-Verlag, Berlin, 1999
[6] From wall spaces to cube complexes, Internat. J. Algebra Comput., Volume 15 (2005) no. 5–6, pp. 875-885
[7] Simplicité de groupes d'automorphismes d'espaces à courbure négative, The Epstein Birthday Schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 181-248 (electronic)
[8] Special cube complexes, Geom. Funct. Anal., Volume 17 (2008) no. 5, pp. 1551-1620
[9] G.C. Hruska, D.T. Wise, Finiteness properties of groups acting on -cube complex, in preparation
[10] Cubulating spaces with walls, Algebr. Geom. Topol., Volume 4 (2004), pp. 297-309 (electronic)
[11] Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. (3), Volume 71 (1995) no. 3, pp. 585-617
Cited by Sources:
Comments - Policy