Comptes Rendus
Théorie des nombres
Minoration de rangs de courbes elliptiques
Comptes Rendus. Mathématique, Volume 346 (2008) no. 23-24, pp. 1225-1230.

Nous énonçons dans cette Note un résultat quantitatif concernant le groupe des points rationnels d'une courbe elliptique qui sont définis sur certains corps de classes de Hilbert. Il s'agit d'établir une borne inférieure pour le rang. Nous présentons également une approche analytique qui se fonde sur l'estimation de sommes de coefficients d'une forme modulaire aux valeurs d'un polynôme quadratique. Cette estimée est une version non scindée d'un problème de convolution décalée.

We state a quantitative result concerning the group of rational points on an elliptic curve that are defined over certain Hilbert class fields. We provide a lower bound for the rank. We present also an analytic approach based on the proof of an estimate for sums of Fourier coefficients of a modular form along values taken by a quadratic polynomial. This estimate is a non-split version of the shifted convolution problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.10.016

Nicolas Templier 1

1 Institute for Advanced Study, Princeton, NJ 08540, États-Unis
@article{CRMATH_2008__346_23-24_1225_0,
     author = {Nicolas Templier},
     title = {Minoration de rangs de courbes elliptiques},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1225--1230},
     publisher = {Elsevier},
     volume = {346},
     number = {23-24},
     year = {2008},
     doi = {10.1016/j.crma.2008.10.016},
     language = {fr},
}
TY  - JOUR
AU  - Nicolas Templier
TI  - Minoration de rangs de courbes elliptiques
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 1225
EP  - 1230
VL  - 346
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2008.10.016
LA  - fr
ID  - CRMATH_2008__346_23-24_1225_0
ER  - 
%0 Journal Article
%A Nicolas Templier
%T Minoration de rangs de courbes elliptiques
%J Comptes Rendus. Mathématique
%D 2008
%P 1225-1230
%V 346
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2008.10.016
%G fr
%F CRMATH_2008__346_23-24_1225_0
Nicolas Templier. Minoration de rangs de courbes elliptiques. Comptes Rendus. Mathématique, Volume 346 (2008) no. 23-24, pp. 1225-1230. doi : 10.1016/j.crma.2008.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.10.016/

[1] V. Blomer Sums of Hecke eigenvalues over quadratic polynomials, 2008 Int. Math. Res. Notices (2008), IDrnn059, à paraître | arXiv

[2] W. Duke Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., Volume 92 (1988) no. 1, pp. 73-90

[3] W. Duke; J. Friedlander; H. Iwaniec Class group L-functions, Duke Math. J., Volume 79 (1995) no. 1, pp. 1-56

[4] W. Duke; J. Friedlander; H. Iwaniec A quadratic divisor problem, Invent. Math., Volume 115 (1994) no. 2, pp. 209-217

[5] W. Duke; J. Friedlander; H. Iwaniec Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math., Volume 141 (1995) no. 2, pp. 423-441

[6] B.H. Gross; W. Kohnen; D.B. Zagier Heegner points and derivatives of L-series, II, Math. Ann., Volume 278 (1987), pp. 497-562

[7] B.H. Gross; D.B. Zagier Heegner points and derivatives of L-series, Invent. Math., Volume 84 (1986) no. 2, pp. 225-320

[8] S. Helgason The Radon Transform, Progress in Mathematics, vol. 5, Birkhäuser, Boston, MA, 1999

[9] C. Hooley On the number of divisors of a quadratic polynomial, Acta Math., Volume 110 (1963), pp. 97-114

[10] E. Kowalski; H. Iwaniec Analytic Number Theory, American Mathematical Society, Providence, RI, 2004

[11] K. Martin, D. Whitehouse, Central L-values and toric periods for GL(2), Int. Math. Res. Notices (2008), à paraître

[12] Ph. Michel The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points, Ann. of Math., Volume 160 (2004) no. 1, pp. 185-236

[13] Ph. Michel Analytic number theory and families of automorphic L-functions, Automorphic Forms and Applications, IAS/Park City Math. Ser., vol. 12, Amer. Math. Soc., Providence, RI, 2007, pp. 181-295

[14] Ph. Michel; A. Venkatesh Heegner points and non-vanishing of Rankin/Selberg L-functions, Analytic Number Theory: A Tribute to Gauss and Dirichlet, Clay Math. Proc., vol. 7, 2007, pp. 169-184

[15] Ph. Michel; A. Venkatesh Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik, International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zürich, 2006, pp. 421-457

[16] A. Popa Central values of Rankin L-series over real quadratic fields, Compositio Math., Volume 142 (2006) no. 4, pp. 811-866

[17] G. Ricotta, T. Vidick, Hauteur asymptotique des points de Heegner, Canad. J. Math., à paraître

[18] B. Rubin Helgason–Marchaud inversion formulas for Radon transforms, Proc. Amer. Math. Soc., Volume 130 (2002) no. 10, pp. 3017-3023

[19] P. Sarnak Additive number theory and Maass forms, Lecture Notes in Math., vol. 1052, Springer, Berlin, 1984, pp. 286-309

[20] C.-L. Siegel Über die Classenzahl quadratischer Zahlkörper, Acta Arith. (Ges. Abh.), Volume 1 (1935), pp. 83-86 (Reprinted, vol. I, 1966, pp. 406-409)

[21] L. Szpiro; E. Ullmo; S.-W. Zhang Équirépartition des petits points, Invent. Math., Volume 127 (1997) no. 2, pp. 337-347

[22] N. Templier, Points spéciaux et valeurs spéciales de fonctions L, Thèse de doctorat, Montpellier, juin 2008

[23] N. Templier, A non-split sum of coefficients of modular forms, en préparation

[24] N. Templier, Minoration du rang des courbes elliptiques sur les corps de classes de Hilbert, en préparation

[25] S.-W. Zhang Gross–Zagier formula for GL2, Asian J. Math., Volume 5 (2001) no. 2, pp. 183-290

Cité par Sources :

Commentaires - Politique