As a consequence of the vector-valued Hardy inequality it is given a characterization of upper triangular trace class matrices completely similar to that of classical Hardy space of analytic functions , as may be found for instance in Pavlović's book.
On donne une caractérisation de la classe des matrices supérieurement triangulaires à trace comme une conséquence de l'inégalité vectorielle de Hardy. Cette caractérisation est complètement similaire de celle valable por les espaces de Hardy.
Accepted:
Published online:
Nicolae Popa 1, 2
@article{CRMATH_2009__347_1-2_59_0, author = {Nicolae Popa}, title = {A characterization of upper triangular trace class matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {59--62}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.020}, language = {en}, }
Nicolae Popa. A characterization of upper triangular trace class matrices. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 59-62. doi : 10.1016/j.crma.2008.11.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.020/
[1] Theorems of Hardy and Paley for vector valued analytic functions and related classes of Banach spaces, Trans. Amer. Math. Soc., Volume 323 (1991), pp. 335-367
[2] Hardy's inequality and the norm of exponential sums, Ann. of Math., Volume 113 (1981), pp. 613-618
[3] M. Pavlović, Introduction to function spaces on the disk, Matematicki Institut SANU, Beograd, 2004
[4] A strong convergence theorem for , Storrs, CT, 1980/1981 (Lecture Notes in Math.), Volume vol. 995, Springer-Verlag, Berlin (1983), pp. 169-173
Cited by Sources:
Comments - Policy