[Problème de Cauchy global pour des systèmes hyperboliques á coefficients superlinéaire lorsque
We investigate the global well-posedness of the Cauchy problem for first order linear hyperbolic systems allowing superlinear growth of the characteristic roots for
Nous étudions les problèmes de Cauchy bien posès pour les systèmes hyperboliques linéaires du 1er ordre avec des racines caractéristiques superlinéaires lorsque
Accepté le :
Publié le :
Daniel Gourdin 1 ; Todor Gramchev 2
@article{CRMATH_2009__347_1-2_49_0, author = {Daniel Gourdin and Todor Gramchev}, title = {Global {Cauchy} problems for hyperbolic systems with characteristics admitting superlinear growth for $ |x|\to \infty $}, journal = {Comptes Rendus. Math\'ematique}, pages = {49--54}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.009}, language = {en}, }
TY - JOUR AU - Daniel Gourdin AU - Todor Gramchev TI - Global Cauchy problems for hyperbolic systems with characteristics admitting superlinear growth for $ |x|\to \infty $ JO - Comptes Rendus. Mathématique PY - 2009 SP - 49 EP - 54 VL - 347 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2008.11.009 LA - en ID - CRMATH_2009__347_1-2_49_0 ER -
%0 Journal Article %A Daniel Gourdin %A Todor Gramchev %T Global Cauchy problems for hyperbolic systems with characteristics admitting superlinear growth for $ |x|\to \infty $ %J Comptes Rendus. Mathématique %D 2009 %P 49-54 %V 347 %N 1-2 %I Elsevier %R 10.1016/j.crma.2008.11.009 %G en %F CRMATH_2009__347_1-2_49_0
Daniel Gourdin; Todor Gramchev. Global Cauchy problems for hyperbolic systems with characteristics admitting superlinear growth for $ |x|\to \infty $. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 49-54. doi : 10.1016/j.crma.2008.11.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.009/
[1] Introduction to the Theory of Linear Partial Differential Equations, Studies in Mathematics and its Applications, vol. 14, North-Holland Publishing Co., Amsterdam–New York, 1982
[2] The Technique of Pseudodifferential Operators, LMS Lecture Note Series, vol. 202, Cambridge Univ. Press, Cambridge, 1995
[3] Cauchy problem for SG-hyperbolic equations with constant multiplicities, Ricerche Mat., Volume 48 (1999) no. suppl., pp. 25-43
[4] Problème de Cauchy non caractéristique pour les systèmes hyperboliques à caractéristiques de multiplicité variable, Domaine de dépendence, Comm. Partial Differential Equations, Volume 4 (1979), pp. 447-507
[5] Global in time solutions of evolution equations in scales of Banach function spaces in
[6] Solutions globales d'un problème de Cauchy linèaire, J. Funct. Anal., Volume 202 (2003) no. 1, pp. 123-146
[7] Ordinary Differential Equations, John Wiley & Sons, New York–London–Sydney, 1964
[8] Representation of solutions and regularity properties for weakly hyperbolic systems, Pseudo-Differential Operators and Related Topics, Oper. Theory Adv. Appl., vol. 164, Birkhäuser, Basel, 2006, pp. 53-63
[9] On the Cauchy Problem, Notes and Reports in Mathematics in Science and Engineering, vol. 3, Science Press and Academic Press, 1985
[10] Global
[11] The nonlocal existence problem of ordinary differential equations, Amer. J. Math., Volume 67 (1945), pp. 277-284 (125–132)
Cité par Sources :
Commentaires - Politique