We give a simple proof of a functional version of the Blaschke–Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke–Santaló inequality.
On présente une démonstration simple d'une version fonctionnelle de l'inégalité de Blaschke–Santaló, due à Artstein, Klartag et Milman. On procède par récurrence sur la dimension, sans faire appel à l'inégalité ensembliste.
Accepted:
Published online:
Joseph Lehec 1
@article{CRMATH_2009__347_1-2_55_0, author = {Joseph Lehec}, title = {A direct proof of the functional {Santal\'o} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {55--58}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.015}, language = {en}, }
Joseph Lehec. A direct proof of the functional Santaló inequality. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 55-58. doi : 10.1016/j.crma.2008.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.015/
[1] The Santaló point of a function, and a functional form of Santaló inequality, Mathematika, Volume 51 (2005), pp. 33-48
[2] K. Ball, Isometric problems in and sections of convex sets, Doctoral thesis, University of Cambridge, 1986
[3] An elementary introduction to modern convex geometry (S. Levy, ed.), Flavors of Geometry, Cambridge University Press, 1997
[4] Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395
[5] J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. (Basel) (2008), in press
[6] Extended affine surface area, Adv. Math., Volume 85 (1991) no. 1, pp. 39-68
[7] On the Blaschke Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93
Cited by Sources:
Comments - Policy