Comptes Rendus
Functional Analysis
A direct proof of the functional Santaló inequality
Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 55-58.

We give a simple proof of a functional version of the Blaschke–Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke–Santaló inequality.

On présente une démonstration simple d'une version fonctionnelle de l'inégalité de Blaschke–Santaló, due à Artstein, Klartag et Milman. On procède par récurrence sur la dimension, sans faire appel à l'inégalité ensembliste.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.11.015

Joseph Lehec 1

1 Université Paris-Est, Laboratoire d'analyse et de mathématiques appliquées, cité Descartes, 5, boulevard Descartes, 77454 Marne la Vallée cedex 2, France
@article{CRMATH_2009__347_1-2_55_0,
     author = {Joseph Lehec},
     title = {A direct proof of the functional {Santal\'o} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {55--58},
     publisher = {Elsevier},
     volume = {347},
     number = {1-2},
     year = {2009},
     doi = {10.1016/j.crma.2008.11.015},
     language = {en},
}
TY  - JOUR
AU  - Joseph Lehec
TI  - A direct proof of the functional Santaló inequality
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 55
EP  - 58
VL  - 347
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2008.11.015
LA  - en
ID  - CRMATH_2009__347_1-2_55_0
ER  - 
%0 Journal Article
%A Joseph Lehec
%T A direct proof of the functional Santaló inequality
%J Comptes Rendus. Mathématique
%D 2009
%P 55-58
%V 347
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2008.11.015
%G en
%F CRMATH_2009__347_1-2_55_0
Joseph Lehec. A direct proof of the functional Santaló inequality. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 55-58. doi : 10.1016/j.crma.2008.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.015/

[1] S. Artstein; B. Klartag; V. Milman The Santaló point of a function, and a functional form of Santaló inequality, Mathematika, Volume 51 (2005), pp. 33-48

[2] K. Ball, Isometric problems in p and sections of convex sets, Doctoral thesis, University of Cambridge, 1986

[3] K. Ball An elementary introduction to modern convex geometry (S. Levy, ed.), Flavors of Geometry, Cambridge University Press, 1997

[4] M. Fradelizi; M. Meyer Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395

[5] J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. (Basel) (2008), in press

[6] E. Lutwak Extended affine surface area, Adv. Math., Volume 85 (1991) no. 1, pp. 39-68

[7] M. Meyer; A. Pajor On the Blaschke Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93

Cited by Sources:

Comments - Policy