Let be a bounded smooth domain, be a Caratheodory function with and , for some . Consider the functional J : , Ω defined as
Soit Ω un ouvert borné régulier de , une fonction de Caratheodory vérifiant et , et pour une constante . Considérons la fonctionnelle , définie par
Accepted:
Published online:
Jacques Giacomoni 1; S. Prashanth 2; K. Sreenadh 3
@article{CRMATH_2009__347_5-6_255_0, author = {Jacques Giacomoni and S. Prashanth and K. Sreenadh}, title = {$ {W}^{1,N}$ versus $ {C}^{1}$ local minimizers for elliptic functionals with critical growth in $ {\mathbb{R}}^{N}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {255--260}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.010}, language = {en}, }
TY - JOUR AU - Jacques Giacomoni AU - S. Prashanth AU - K. Sreenadh TI - $ {W}^{1,N}$ versus $ {C}^{1}$ local minimizers for elliptic functionals with critical growth in $ {\mathbb{R}}^{N}$ JO - Comptes Rendus. Mathématique PY - 2009 SP - 255 EP - 260 VL - 347 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2009.01.010 LA - en ID - CRMATH_2009__347_5-6_255_0 ER -
%0 Journal Article %A Jacques Giacomoni %A S. Prashanth %A K. Sreenadh %T $ {W}^{1,N}$ versus $ {C}^{1}$ local minimizers for elliptic functionals with critical growth in $ {\mathbb{R}}^{N}$ %J Comptes Rendus. Mathématique %D 2009 %P 255-260 %V 347 %N 5-6 %I Elsevier %R 10.1016/j.crma.2009.01.010 %G en %F CRMATH_2009__347_5-6_255_0
Jacques Giacomoni; S. Prashanth; K. Sreenadh. $ {W}^{1,N}$ versus $ {C}^{1}$ local minimizers for elliptic functionals with critical growth in $ {\mathbb{R}}^{N}$. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 255-260. doi : 10.1016/j.crma.2009.01.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.01.010/
[1] Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543
[2] Minima locaux relatifs à et , C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993), pp. 465-472
[3] Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., Volume 2 (2000) no. 3, pp. 385-404
[4] F. Brock, L. Iturraga, P. Ubilla, A multiplicity result for the p-Laplacian involving a parameter, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press
[5] Meilleures constantes dans des inégalités relatives aux espaces de Sobolev, Bull. Sci. Math., Volume 108 (1984), pp. 225-262
[6] Problèmes de Neumann nonlinéaires sur les variétés Riemanniennes, C. R. Acad. Sci. Paris, Sér. A, Volume 292 (1981), pp. 637-640
[7] D.G. De Figueiredo, J.P. Gossez, P. Ubilla, Local “superlinearity” and “sublinearity” for the p-Laplacian, in press
[8] A global multiplicity result for N-Laplacian with critical nonlinearity of concave-convex type, J. Differential Equations, Volume 232 (2007), pp. 544-572
[9] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., Volume 12 (1988) no. 11, pp. 1203-1219
[10] Equations Elliptiques du Second Ordre à Coefficients Discontinues, Les Presses de l'Université de Montréal, 1966
Cited by Sources:
Comments - Policy