[Minima locaux relatifs à
Soit Ω un ouvert borné régulier de
Let
Accepté le :
Publié le :
Jacques Giacomoni 1 ; S. Prashanth 2 ; K. Sreenadh 3
@article{CRMATH_2009__347_5-6_255_0, author = {Jacques Giacomoni and S. Prashanth and K. Sreenadh}, title = {$ {W}^{1,N}$ versus $ {C}^{1}$ local minimizers for elliptic functionals with critical growth in $ {\mathbb{R}}^{N}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {255--260}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.010}, language = {en}, }
TY - JOUR AU - Jacques Giacomoni AU - S. Prashanth AU - K. Sreenadh TI - $ {W}^{1,N}$ versus $ {C}^{1}$ local minimizers for elliptic functionals with critical growth in $ {\mathbb{R}}^{N}$ JO - Comptes Rendus. Mathématique PY - 2009 SP - 255 EP - 260 VL - 347 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2009.01.010 LA - en ID - CRMATH_2009__347_5-6_255_0 ER -
%0 Journal Article %A Jacques Giacomoni %A S. Prashanth %A K. Sreenadh %T $ {W}^{1,N}$ versus $ {C}^{1}$ local minimizers for elliptic functionals with critical growth in $ {\mathbb{R}}^{N}$ %J Comptes Rendus. Mathématique %D 2009 %P 255-260 %V 347 %N 5-6 %I Elsevier %R 10.1016/j.crma.2009.01.010 %G en %F CRMATH_2009__347_5-6_255_0
Jacques Giacomoni; S. Prashanth; K. Sreenadh. $ {W}^{1,N}$ versus $ {C}^{1}$ local minimizers for elliptic functionals with critical growth in $ {\mathbb{R}}^{N}$. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 255-260. doi : 10.1016/j.crma.2009.01.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.01.010/
[1] Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543
[2] Minima locaux relatifs à
[3] Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., Volume 2 (2000) no. 3, pp. 385-404
[4] F. Brock, L. Iturraga, P. Ubilla, A multiplicity result for the p-Laplacian involving a parameter, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press
[5] Meilleures constantes dans des inégalités relatives aux espaces de Sobolev, Bull. Sci. Math., Volume 108 (1984), pp. 225-262
[6] Problèmes de Neumann nonlinéaires sur les variétés Riemanniennes, C. R. Acad. Sci. Paris, Sér. A, Volume 292 (1981), pp. 637-640
[7] D.G. De Figueiredo, J.P. Gossez, P. Ubilla, Local “superlinearity” and “sublinearity” for the p-Laplacian, in press
[8] A global multiplicity result for N-Laplacian with critical nonlinearity of concave-convex type, J. Differential Equations, Volume 232 (2007), pp. 544-572
[9] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., Volume 12 (1988) no. 11, pp. 1203-1219
[10] Equations Elliptiques du Second Ordre à Coefficients Discontinues, Les Presses de l'Université de Montréal, 1966
- W 0 1 , p ( Ω ) × W 0 1 , p ( Ω ) versus C 0 1 ( Ω ) × C 0 1 ( Ω ) local minimizers, Asymptotic Analysis, Volume 140 (2024) no. 1-2, p. 59 | DOI:10.3233/asy-241911
- Critical fractional elliptic equations with exponential growth, Journal of Elliptic and Parabolic Equations, Volume 7 (2021) no. 1, p. 75 | DOI:10.1007/s41808-021-00095-z
- Existence of Positive Solution to Schrödinger-type Semipositone Problems with Mixed Nonlinear Boundary Conditions, Taiwanese Journal of Mathematics, Volume 25 (2021) no. 1 | DOI:10.11650/tjm/200702
- Critical Concave Convex Ambrosetti–Prodi Type Problems for Fractional 𝑝-Laplacian, Advanced Nonlinear Studies, Volume 20 (2020) no. 4, p. 847 | DOI:10.1515/ans-2020-2106
- Existence of multiple solutions for a singular and quasilinear equation, Complex Variables and Elliptic Equations, Volume 60 (2015) no. 7, p. 893 | DOI:10.1080/17476933.2014.981169
- On multiplicity of positive solutions forN-Laplacian with singular and critical nonlinearity, Complex Variables and Elliptic Equations, Volume 59 (2014) no. 12, p. 1636 | DOI:10.1080/17476933.2013.870561
- OnW1, p(x)versus C1local minimizers of functionals related top(x)-Laplacian, Applicable Analysis, Volume 92 (2013) no. 6, p. 1271 | DOI:10.1080/00036811.2012.670224
- Nonlinear Elliptic Equations with Singular Terms and Combined Nonlinearities, Annales Henri Poincaré, Volume 13 (2012) no. 3, p. 481 | DOI:10.1007/s00023-011-0129-9
- OnW1,pversusC1(Ω) local minimizers for functionals with critical growth, Applicable Analysis, Volume 91 (2012) no. 9, p. 1749 | DOI:10.1080/00036811.2011.581234
- W01,p versus C1 local minimizers for a singular and critical functional, Journal of Mathematical Analysis and Applications, Volume 363 (2010) no. 2, p. 697 | DOI:10.1016/j.jmaa.2009.10.012
- Multiple positive solutions for a quasilinear elliptic equation with critical exponential nonlinearity, Nonlinear Analysis: Theory, Methods Applications, Volume 73 (2010) no. 8, p. 2368 | DOI:10.1016/j.na.2010.05.049
Cité par 11 documents. Sources : Crossref
Commentaires - Politique