[Explosion en temps fini des solutions à symétrie radiale d'un système de Smoluchowski–Poisson quasilinéaire critique]
L'explosion en temps fini est établie pour des solutions à symétrie radiale d'un système de Smoluchowski–Poisson quasilinéaire critique dès que la masse de la donnée initiale dépasse un certain seuil. Dans le cas surcritique, l'explosion peut se produire pour toute masse positive. L'argument principal de la démonstration est une nouvelle identité de type viriel.
Finite time blow-up is shown to occur for radially symmetric solutions to a critical quasilinear Smoluchowski–Poisson system provided that the mass of the initial condition exceeds an explicit threshold. In the supercritical case, blow-up is shown to take place for any positive mass. The proof relies on a novel identity of virial type.
Accepté le :
Publié le :
Tomasz Cieślak 1 ; Philippe Laurençot 2
@article{CRMATH_2009__347_5-6_237_0, author = {Tomasz Cie\'slak and Philippe Lauren\c{c}ot}, title = {Finite time blow-up for radially symmetric solutions to a critical quasilinear {Smoluchowski{\textendash}Poisson} system}, journal = {Comptes Rendus. Math\'ematique}, pages = {237--242}, publisher = {Elsevier}, volume = {347}, number = {5-6}, year = {2009}, doi = {10.1016/j.crma.2009.01.016}, language = {en}, }
TY - JOUR AU - Tomasz Cieślak AU - Philippe Laurençot TI - Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski–Poisson system JO - Comptes Rendus. Mathématique PY - 2009 SP - 237 EP - 242 VL - 347 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2009.01.016 LA - en ID - CRMATH_2009__347_5-6_237_0 ER -
%0 Journal Article %A Tomasz Cieślak %A Philippe Laurençot %T Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski–Poisson system %J Comptes Rendus. Mathématique %D 2009 %P 237-242 %V 347 %N 5-6 %I Elsevier %R 10.1016/j.crma.2009.01.016 %G en %F CRMATH_2009__347_5-6_237_0
Tomasz Cieślak; Philippe Laurençot. Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski–Poisson system. Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, pp. 237-242. doi : 10.1016/j.crma.2009.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.01.016/
[1] A. Blanchet, J.A. Carrillo, Ph. Laurençot, Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, in press
[2] Generalized thermodynamics and Fokker–Planck equations. Applications to stellar dynamics and two-dimensional turbulence, Phys. Rev. E, Volume 68 (2003), p. 036108
[3] T. Cieślak, Ph. Laurençot, Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski–Poisson system, in preparation
[4] Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, Volume 21 (2008), pp. 1057-1076
[5] On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824
[6] Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415
[7] Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., Volume 5 (1995), pp. 581-601
Cité par Sources :
Commentaires - Politique