We propose a cell-centered symmetric scheme which combines the advantages of MPFA (multipoint flux approximation) schemes such as the L or the O scheme and of hybrid schemes: it may be used on general non-conforming meshes, it yields a 9-point stencil on two-dimensional quadrangular meshes, it takes into account the heterogeneous diffusion matrix, it is coercive and it can be shown to converge. The scheme relies on the use of special points, called harmonic averaging points, located at the interfaces of heterogeneity.
Nous proposons un schéma ayant ses inconnues aux centres des mailles, combinant les avantages des schémas à flux multi-points et des schémas hybrides : il possède un stencil à 9 points en 2D, respecte les hétérogénéités de la matrice de diffusion, et il est coercif ; de plus, on peut montrer qu'il converge. Le schéma est basé sur l'utilisation de points situé aux interfaces d'hétérogénéité, en lesquels la formule de la moyenne harmonique est utilisable.
Accepted:
Published online:
Léo Agelas 1; Robert Eymard 2; Raphaèle Herbin 3
@article{CRMATH_2009__347_11-12_673_0, author = {L\'eo Agelas and Robert Eymard and Rapha\`ele Herbin}, title = {A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media}, journal = {Comptes Rendus. Math\'ematique}, pages = {673--676}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.013}, language = {en}, }
TY - JOUR AU - Léo Agelas AU - Robert Eymard AU - Raphaèle Herbin TI - A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media JO - Comptes Rendus. Mathématique PY - 2009 SP - 673 EP - 676 VL - 347 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2009.03.013 LA - en ID - CRMATH_2009__347_11-12_673_0 ER -
%0 Journal Article %A Léo Agelas %A Robert Eymard %A Raphaèle Herbin %T A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media %J Comptes Rendus. Mathématique %D 2009 %P 673-676 %V 347 %N 11-12 %I Elsevier %R 10.1016/j.crma.2009.03.013 %G en %F CRMATH_2009__347_11-12_673_0
Léo Agelas; Robert Eymard; Raphaèle Herbin. A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 673-676. doi : 10.1016/j.crma.2009.03.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.013/
[1] Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media, J. Comput. Phys., Volume 127 (1996) no. 1, pp. 2-14
[2] Discretization on unstructured grids for inhomogeneous, anisotropic media. Part i: Derivation of the methods, SIAM J. Sci. Comput., Volume 19 (1998), pp. 1700-1716
[3] Direct Methods for Sparse Matrices, Monographs on Numerical Analysis, vol. XIII, Clarendon Press, Oxford, 1986 (341 pp)
[4] A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis, C. R. Math. Acad. Sci. Paris, Volume 344 (2007) no. 6, pp. 403-406
[5] Benchmark on anisotropic problems, SUSHI: a scheme using stabilization and hybrid interfaces for anisotropic heterogeneous diffusion problems (R. Eymard; J.-M. Hérard, eds.), Finite Volumes for Complex Applications, vol. V, Wiley, 2008, pp. 801-814
[6] R. Eymard, T. Gallouët, R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general non-conforming meshes, SUSHI: a scheme using stabilization and hybrid interfaces, IMAJNA, 2009, in press; see also http://hal.archives-ouvertes.fr/
[7] Benchmark on discretization schemes for anisotropic diffusion problems on general grids for anisotropic heterogeneous diffusion problems (R. Eymard; J.-M. Hérard, eds.), Finite Volumes for Complex Applications, vol. V, Wiley, 2008, pp. 659-692
Cited by Sources:
☆ Work supported by Groupement de Recherche MOMAS, PACEN/CNRS.
Comments - Policy