[Géométrie des espaces de Sobolev à coefficients variables : lissitude et convexité uniforme]
Soit
Let
Accepté le :
Publié le :
George Dinca 1 ; Pavel Matei 2
@article{CRMATH_2009__347_15-16_885_0, author = {George Dinca and Pavel Matei}, title = {Geometry of {Sobolev} spaces with variable exponent: smoothness and uniform convexity}, journal = {Comptes Rendus. Math\'ematique}, pages = {885--889}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.04.028}, language = {en}, }
TY - JOUR AU - George Dinca AU - Pavel Matei TI - Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity JO - Comptes Rendus. Mathématique PY - 2009 SP - 885 EP - 889 VL - 347 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2009.04.028 LA - en ID - CRMATH_2009__347_15-16_885_0 ER -
George Dinca; Pavel Matei. Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 885-889. doi : 10.1016/j.crma.2009.04.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.028/
[1] Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1975
[2] G. Dinca, P. Matei, Geometry of Sobolev spaces with variable exponent and a generalization of the p-Laplacian, Analysis and Applications, in press
[3] Sobolev embeddings with variable exponent, I, Studia Mathematica, Volume 143 (2000), pp. 267-292
[4] Sobolev embeddings with variable exponent, II, Math. Nachr., Volume 246–247 (2002), pp. 53-67
[5] On the spaces
[6] Eine Verallgemeinerung der Sobolewschen Räume in unbeschränkten Gebieten, Math. Nachr., Volume 32 (1966), pp. 115-130
[7] On spaces
[8] Convex Functions and Orlicz Spaces, Gröningen, Noordhoff, 1961
[9] Monotone potential operatoren in theorie und anwendung, Springer Verlag der Wissenschaften, Berlin, 1976
- Special Issue: Fixed-Point Theory and Its Applications, Dedicated to the Memory of Professor William Arthur Kirk, Symmetry, Volume 16 (2024) no. 11, p. 1408 | DOI:10.3390/sym16111408
- Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging, Numerical Algorithms, Volume 92 (2023) no. 1, p. 149 | DOI:10.1007/s11075-022-01458-w
- Uniform Convexity in Variable Exponent Sobolev Spaces, Symmetry, Volume 15 (2023) no. 11, p. 1988 | DOI:10.3390/sym15111988
- Modular-Proximal Gradient Algorithms in Variable Exponent Lebesgue Spaces, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 6, p. A3463 | DOI:10.1137/21m1464336
- , 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (2020), p. 1 | DOI:10.23919/ursigass49373.2020.9232449
- Microwave Imaging by Means of Lebesgue-Space Inversion: An Overview, Electronics, Volume 8 (2019) no. 9, p. 945 | DOI:10.3390/electronics8090945
- Quantitative Microwave Imaging Method in Lebesgue Spaces With Nonconstant Exponents, IEEE Transactions on Antennas and Propagation, Volume 66 (2018) no. 12, p. 7282 | DOI:10.1109/tap.2018.2869201
- Γ-convergence of the energy functionals for the variable exponent p(·)-Laplacian and stability of the minimizers with respect to integrability, Journal d'Analyse Mathématique, Volume 134 (2018) no. 2, p. 575 | DOI:10.1007/s11854-018-0018-y
- Stability of the Norm-Eigenfunctions of the
p ( · ) -Laplacian, Integral Equations and Operator Theory, Volume 85 (2016) no. 2, p. 245 | DOI:10.1007/s00020-015-2275-9 - Convergence properties of modular eigenfunctions for the -Laplacian, Nonlinear Analysis: Theory, Methods Applications, Volume 104 (2014), p. 156 | DOI:10.1016/j.na.2014.03.008
- FRÉCHET DIFFERENTIABILITY OF THE NORM IN A SOBOLEV SPACE WITH A VARIABLE EXPONENT, Analysis and Applications, Volume 11 (2013) no. 04, p. 1350012 | DOI:10.1142/s0219530513500127
- Structure of Variable Lebesgue Spaces, Variable Lebesgue Spaces (2013), p. 13 | DOI:10.1007/978-3-0348-0548-3_2
Cité par 12 documents. Sources : Crossref
Commentaires - Politique