Comptes Rendus
Partial Differential Equations/Functional Analysis
Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity
Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 885-889.

Let ΩRN, N2, be a smooth bounded domain. It is shown that: (a) if pL(Ω) and essinfxΩp(x)>1, then the generalized Lebesgue space (Lp()(Ω),p()) is smooth; (b) if pC(Ω¯) and p(x)>1, for all xΩ¯, then the generalized Sobolev space (W01,p()(Ω),1,p()) is smooth. In both situations, the formulae giving the Gâteaux derivative of the norm, corresponding to each of the above spaces, are given; (c) if pC(Ω¯) and p(x)2, for all xΩ¯, then (W01,p()(Ω),1,p()) is uniformly convex and smooth.

Soit ΩRN, N2, un domain borné et régulier. On demontre que : (a) si pL(Ω) et essinfxΩp(x)>1, alors l'espace de Lebesgue généralisé (Lp()(Ω),p()) est lisse ; (b) si pC(Ω¯) et p(x)>1, pour tout xΩ¯, alors l'espace de Sobolev généralisé (W01,p()(Ω),1,p()) est lisse. Dans les deux cas, les formules de la dérivée au sens de Gâteaux de chaque norme des espaces ci-dessus sont données ; (c) si pC(Ω¯) et p(x)2, pour tout xΩ¯, alors (W01,p()(Ω),1,p()) est uniformément convexe et lisse.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.04.028

George Dinca 1; Pavel Matei 2

1 Faculty of Mathematics and Computer Science, 14, Academiei St, 010014 Bucharest, Romania
2 Department of Mathematics, Technical University of Civil Engineering, 124, Lacul Tei Blvd., 020396 Bucharest, Romania
@article{CRMATH_2009__347_15-16_885_0,
     author = {George Dinca and Pavel Matei},
     title = {Geometry of {Sobolev} spaces with variable exponent: smoothness and uniform convexity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {885--889},
     publisher = {Elsevier},
     volume = {347},
     number = {15-16},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.028},
     language = {en},
}
TY  - JOUR
AU  - George Dinca
AU  - Pavel Matei
TI  - Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 885
EP  - 889
VL  - 347
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2009.04.028
LA  - en
ID  - CRMATH_2009__347_15-16_885_0
ER  - 
%0 Journal Article
%A George Dinca
%A Pavel Matei
%T Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity
%J Comptes Rendus. Mathématique
%D 2009
%P 885-889
%V 347
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2009.04.028
%G en
%F CRMATH_2009__347_15-16_885_0
George Dinca; Pavel Matei. Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 885-889. doi : 10.1016/j.crma.2009.04.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.028/

[1] J. Diestel Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1975

[2] G. Dinca, P. Matei, Geometry of Sobolev spaces with variable exponent and a generalization of the p-Laplacian, Analysis and Applications, in press

[3] D.E. Edmunds; J. Rákosník Sobolev embeddings with variable exponent, I, Studia Mathematica, Volume 143 (2000), pp. 267-292

[4] D.E. Edmunds; J. Rákosník Sobolev embeddings with variable exponent, II, Math. Nachr., Volume 246–247 (2002), pp. 53-67

[5] X.L. Fan; D. Zhao On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., Volume 263 (2001), pp. 424-446

[6] K. Gröger Eine Verallgemeinerung der Sobolewschen Räume in unbeschränkten Gebieten, Math. Nachr., Volume 32 (1966), pp. 115-130

[7] O. Kováčik; J. Rákosník On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., Volume 41 (1991), pp. 592-618

[8] M.A. Krasnosel'skij; Ya.B. Rutickij Convex Functions and Orlicz Spaces, Gröningen, Noordhoff, 1961

[9] A. Langenbach Monotone potential operatoren in theorie und anwendung, Springer Verlag der Wissenschaften, Berlin, 1976

Cited by Sources:

Comments - Policy