[Ondes de Rossby piégées]
Les ondes associées aux mouvements océaniques à grande échelle sont les ondes de gravité (dites de Poincaré) qui dispersent très vite, et les ondes quasigéostrophiques (dites de Rossby). Dans cette Note, nous montrons par une analyse semiclassique que les ondes de Rossby peuvent être piégées et nous caractérisons les conditions initiales correspondantes.
Waves associated to large scale oceanic motions are gravity waves (Poincaré waves which disperse fast) and quasigeostrophic waves (Rossby waves). In this Note, we show by semiclassical arguments, that Rossby waves can be trapped and we characterize the corresponding initial conditions.
Accepté le :
Publié le :
Christophe Cheverry 1 ; Isabelle Gallagher 2 ; Thierry Paul 3 ; Laure Saint-Raymond 4
@article{CRMATH_2009__347_15-16_879_0, author = {Christophe Cheverry and Isabelle Gallagher and Thierry Paul and Laure Saint-Raymond}, title = {Trapping {Rossby} waves}, journal = {Comptes Rendus. Math\'ematique}, pages = {879--884}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.05.007}, language = {en}, }
TY - JOUR AU - Christophe Cheverry AU - Isabelle Gallagher AU - Thierry Paul AU - Laure Saint-Raymond TI - Trapping Rossby waves JO - Comptes Rendus. Mathématique PY - 2009 SP - 879 EP - 884 VL - 347 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2009.05.007 LA - en ID - CRMATH_2009__347_15-16_879_0 ER -
Christophe Cheverry; Isabelle Gallagher; Thierry Paul; Laure Saint-Raymond. Trapping Rossby waves. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 879-884. doi : 10.1016/j.crma.2009.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.007/
[1] C. Cheverry, I. Gallagher, T. Paul, L. Saint-Raymond, Trapping Rossby waves by wind forcing, in preparation
[2] A simple justification of the singular limit for equatorial shallow-water dynamics, Comm. Pure Appl. Math., Volume LXI (2008), pp. 0002-0012
[3] Mathematical study of the betaplane model: equatorial waves and convergence results, Mém. Soc. Math. France (N.S.), Volume 107 (2006), p. v+116
[4] An Introduction to Semiclassical and Microlocal Analysis, Springer, 2002
[5] T. Paul, Échelles de temps pour l'évolution quantique à petite constante de Planck, Séminaire X-EDP 2007–2008, École polytechnique
[6] Geophysical Fluid Dynamics, Springer, 1979
[7] Ocean Circulation Theory, Springer, 1996
- Fast Averaging for Long- and Short-wave Scaled Equatorial Shallow Water Equations with Coriolis Parameter Deviating from Linearity, Archive for Rational Mechanics and Analysis, Volume 216 (2015) no. 1, p. 261 | DOI:10.1007/s00205-014-0808-z
- On some geometry of propagation in diffractive time scales, Discrete Continuous Dynamical Systems - A, Volume 32 (2012) no. 2, p. 499 | DOI:10.3934/dcds.2012.32.499
- On the Propagation of Oceanic Waves Driven by a Strong Macroscopic Flow, Nonlinear Partial Differential Equations, Volume 7 (2012), p. 231 | DOI:10.1007/978-3-642-25361-4_13
- Quasineutral Limit of the Vlasov-Poisson System with Massless Electrons, Communications in Partial Differential Equations, Volume 36 (2011) no. 8, p. 1385 | DOI:10.1080/03605302.2011.555804
- Mathematical study of the β-plane model for rotating fluids in a thin layer, Journal de Mathématiques Pures et Appliquées, Volume 94 (2010) no. 2, p. 131 | DOI:10.1016/j.matpur.2010.02.007
- Lecture notes : Mathematical study of singular perturbation problems Applications to large-scale oceanography, Journées équations aux dérivées partielles (2010), p. 1 | DOI:10.5802/jedp.58
Cité par 6 documents. Sources : Crossref
Commentaires - Politique