[Sur le problème de Kashiwara–Vergne pour les algèbres de Lie quadratiques]
On montre, dans cette note, que le problème de Kashiwara–Vergne (KV) pour les algèbres de Lie quadratiques se ramène à l'écriture de la formule de Campbell–Hausdorff sous la forme
We show that the Kashiwara–Vergne (KV) problem for quadratic Lie algebras (that is, Lie algebras admitting an invariant scalar product) reduces to the problem of representing the Campbell–Hausdorff series in the form
Accepté le :
Publié le :
Anton Alekseev 1 ; Charles Torossian 2
@article{CRMATH_2009__347_21-22_1231_0, author = {Anton Alekseev and Charles Torossian}, title = {On triviality of the {Kashiwara{\textendash}Vergne} problem for quadratic {Lie} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {1231--1236}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.021}, language = {en}, }
TY - JOUR AU - Anton Alekseev AU - Charles Torossian TI - On triviality of the Kashiwara–Vergne problem for quadratic Lie algebras JO - Comptes Rendus. Mathématique PY - 2009 SP - 1231 EP - 1236 VL - 347 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2009.09.021 LA - en ID - CRMATH_2009__347_21-22_1231_0 ER -
Anton Alekseev; Charles Torossian. On triviality of the Kashiwara–Vergne problem for quadratic Lie algebras. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1231-1236. doi : 10.1016/j.crma.2009.09.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.021/
[1] The non-commutative Weil algebra, Invent. Math., Volume 139 (2000), pp. 135-172
[2] Poisson geometry and the Kashiwara–Vergne conjecture, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 9, pp. 723-728
[3] On the Kashiwara–Vergne conjecture, Invent. Math., Volume 164 (2006), pp. 615-634
[4] The Kashiwara–Vergne conjecture and Drinfeld's associators (preprint) | arXiv
[5] Deformation quantization and invariant distributions, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 115-120
[6] Convolution of invariant distributions: Proof of the Kashiwara–Vergne conjecture, Lett. Math. Phys., Volume 69 (2004), pp. 177-203
[7] Two applications of elementary knot theory to Lie algebras and Vassiliev invariants, Geom. Topol., Volume 7 (2003), pp. 1-31
[8] Eulerian idempotent and Kashiwara–Vergne conjecture, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 4, pp. 1153-1184
[9] On quasitriangular quasi-Hopf algebras and on a group that is closely connected with
[10] Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup., Volume 10 (1977), pp. 265-288
[11] The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math., Volume 47 (1978), pp. 249-272
[12] Caractérisation des groupes de Lie ayant une pseudo-métrique bi-invariante: Applications, Lyon, 1983, Travaux en Cours, Hermann, Paris (1984), pp. 149-166
[13] Isomorphisme de Duflo et la cohomologie tangentielle, J. Geom. Phys., Volume 51 (2004) no. 4, pp. 486-505
[14] Equivalence of formalities of the little discs operad (preprint) | arXiv
[15] Tsygan formality and Duflo formula, Math. Res. Lett., Volume 10 (2003) no. 5–6, pp. 763-775
[16] Le centre de l'algèbre enveloppante et la formule de Campbell–Hausdorff, C. R. Acad. Sci. Paris Sér. I Math., Volume 329 (1999) no. 9, pp. 767-772
- Two-Dimensional Non-abelian BF Theory in Lorenz Gauge as a Solvable Logarithmic TCFT, Communications in Mathematical Physics, Volume 376 (2020) no. 2, p. 993 | DOI:10.1007/s00220-019-03638-7
- Descent Equations Starting from High Rank Chern-Simons, Communications in Theoretical Physics, Volume 69 (2018) no. 4, p. 375 | DOI:10.1088/0253-6102/69/4/375
- A Lie-algebraic approach to the local index theorem on compact homogeneous spaces, Advances in Mathematics, Volume 296 (2016), p. 127 | DOI:10.1016/j.aim.2016.03.038
- The Kashiwara-Vergne Method for Lie Groups, Symmetric Spaces and the Kashiwara-Vergne Method, Volume 2115 (2014), p. 1 | DOI:10.1007/978-3-319-09773-2_1
- e-Functions and the Campbell-Hausdorff Formula, Symmetric Spaces and the Kashiwara-Vergne Method, Volume 2115 (2014), p. 119 | DOI:10.1007/978-3-319-09773-2_4
- Convolution on Homogeneous Spaces, Symmetric Spaces and the Kashiwara-Vergne Method, Volume 2115 (2014), p. 51 | DOI:10.1007/978-3-319-09773-2_2
- The Role of e-Functions, Symmetric Spaces and the Kashiwara-Vergne Method, Volume 2115 (2014), p. 57 | DOI:10.1007/978-3-319-09773-2_3
- Drinfeld associators, Braid groups and explicit solutions of the Kashiwara–Vergne equations, Publications mathématiques de l'IHÉS, Volume 112 (2010) no. 1, p. 143 | DOI:10.1007/s10240-010-0029-4
Cité par 8 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier