[Sur le problème de Kashiwara–Vergne pour les algèbres de Lie quadratiques]
On montre, dans cette note, que le problème de Kashiwara–Vergne (KV) pour les algèbres de Lie quadratiques se ramène à l'écriture de la formule de Campbell–Hausdorff sous la forme , où et sont des séries de Lie en x et y. Ce résultat explique l'existence dans la littérature, de solutions rationnelles explicites au problème KV quadratique. Notons que la construction d'une solution rationnelle au problème KV général nécessite probablement la connaissance d'un associateur de Drinfeld rationnel.
We show that the Kashiwara–Vergne (KV) problem for quadratic Lie algebras (that is, Lie algebras admitting an invariant scalar product) reduces to the problem of representing the Campbell–Hausdorff series in the form , where and are Lie series in x and y. This observation explains the existence of explicit rational solutions of the quadratic KV problem, whereas constructing an explicit rational solution of the full KV problem would probably require the knowledge of a rational Drinfeld associator. It also gives, in the case of quadratic Lie algebras, a direct proof of the Duflo theorem (implied by the KV problem).
Accepté le :
Publié le :
Anton Alekseev 1 ; Charles Torossian 2
@article{CRMATH_2009__347_21-22_1231_0, author = {Anton Alekseev and Charles Torossian}, title = {On triviality of the {Kashiwara{\textendash}Vergne} problem for quadratic {Lie} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {1231--1236}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.09.021}, language = {en}, }
TY - JOUR AU - Anton Alekseev AU - Charles Torossian TI - On triviality of the Kashiwara–Vergne problem for quadratic Lie algebras JO - Comptes Rendus. Mathématique PY - 2009 SP - 1231 EP - 1236 VL - 347 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2009.09.021 LA - en ID - CRMATH_2009__347_21-22_1231_0 ER -
Anton Alekseev; Charles Torossian. On triviality of the Kashiwara–Vergne problem for quadratic Lie algebras. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1231-1236. doi : 10.1016/j.crma.2009.09.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.021/
[1] The non-commutative Weil algebra, Invent. Math., Volume 139 (2000), pp. 135-172
[2] Poisson geometry and the Kashiwara–Vergne conjecture, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 9, pp. 723-728
[3] On the Kashiwara–Vergne conjecture, Invent. Math., Volume 164 (2006), pp. 615-634
[4] The Kashiwara–Vergne conjecture and Drinfeld's associators (preprint) | arXiv
[5] Deformation quantization and invariant distributions, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 115-120
[6] Convolution of invariant distributions: Proof of the Kashiwara–Vergne conjecture, Lett. Math. Phys., Volume 69 (2004), pp. 177-203
[7] Two applications of elementary knot theory to Lie algebras and Vassiliev invariants, Geom. Topol., Volume 7 (2003), pp. 1-31
[8] Eulerian idempotent and Kashiwara–Vergne conjecture, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 4, pp. 1153-1184
[9] On quasitriangular quasi-Hopf algebras and on a group that is closely connected with , Leningrad Math. J., Volume 2 (1991) no. 4, pp. 829-860
[10] Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup., Volume 10 (1977), pp. 265-288
[11] The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math., Volume 47 (1978), pp. 249-272
[12] Caractérisation des groupes de Lie ayant une pseudo-métrique bi-invariante: Applications, Lyon, 1983, Travaux en Cours, Hermann, Paris (1984), pp. 149-166
[13] Isomorphisme de Duflo et la cohomologie tangentielle, J. Geom. Phys., Volume 51 (2004) no. 4, pp. 486-505
[14] Equivalence of formalities of the little discs operad (preprint) | arXiv
[15] Tsygan formality and Duflo formula, Math. Res. Lett., Volume 10 (2003) no. 5–6, pp. 763-775
[16] Le centre de l'algèbre enveloppante et la formule de Campbell–Hausdorff, C. R. Acad. Sci. Paris Sér. I Math., Volume 329 (1999) no. 9, pp. 767-772
Cité par Sources :
Commentaires - Politique