Comptes Rendus
Poisson geometry and the Kashiwara–Vergne conjecture
[Géométrie de Poisson et la conjecture de Kashiwara–Vergne]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 9, pp. 723-728.

Dans cette Note nous présentons une démonstration de la conjecture de Kashiwara–Vergne pour les algèbres de Lie quadratiques en utilisant des idées de la géométrie de Poisson et en particulier le lemme de Moser équivariant.

We give a Poisson-geometric proof of the Kashiwara–Vergne conjecture for quadratic Lie algebras, based on the equivariant Moser trick.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02560-8

Anton Alekseev 1 ; Eckhard Meinrenken 2

1 University of Geneva, Section of Mathematics, 2-4 rue du Lièvre, 1211 Genève 24, Switzerland
2 University of Toronto, Department of Mathematics, 100 St George Street, Toronto, ON M5S3G3, Canada
@article{CRMATH_2002__335_9_723_0,
     author = {Anton Alekseev and Eckhard Meinrenken},
     title = {Poisson geometry and the {Kashiwara{\textendash}Vergne} conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {723--728},
     publisher = {Elsevier},
     volume = {335},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02560-8},
     language = {en},
}
TY  - JOUR
AU  - Anton Alekseev
AU  - Eckhard Meinrenken
TI  - Poisson geometry and the Kashiwara–Vergne conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 723
EP  - 728
VL  - 335
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02560-8
LA  - en
ID  - CRMATH_2002__335_9_723_0
ER  - 
%0 Journal Article
%A Anton Alekseev
%A Eckhard Meinrenken
%T Poisson geometry and the Kashiwara–Vergne conjecture
%J Comptes Rendus. Mathématique
%D 2002
%P 723-728
%V 335
%N 9
%I Elsevier
%R 10.1016/S1631-073X(02)02560-8
%G en
%F CRMATH_2002__335_9_723_0
Anton Alekseev; Eckhard Meinrenken. Poisson geometry and the Kashiwara–Vergne conjecture. Comptes Rendus. Mathématique, Volume 335 (2002) no. 9, pp. 723-728. doi : 10.1016/S1631-073X(02)02560-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02560-8/

[1] A. Alekseev; A. Malkin; E. Meinrenken Lie group valued moment maps, J. Differential Geom., Volume 48 (1998) no. 3, pp. 445-495

[2] A. Alekseev; E. Meinrenken The non-commutative Weil algebra, Invent. Math., Volume 139 (2000), pp. 135-172

[3] A. Alekseev; E. Meinrenken; C. Woodward Linearization of Poisson actions and singular values of matrix products, Ann. Inst. Fourier (Grenoble), Volume 51 (2001) no. 6, pp. 1691-1717

[4] A. Alekseev; E. Meinrenken; C. Woodward Duistermaat–Heckman measures and moduli spaces of flat bundles over surfaces, Geom. Funct. Anal., Volume 12 (2002), pp. 1-31

[5] M. Andler; A. Dvorsky; S. Sahi Deformation quantization and invariant distributions (arXiv:) | arXiv

[6] M. Andler, S. Sahi, C. Torossian, Convolution of invariant distributions: Proof of the Kashiwara–Vergne conjecture, Preprint, 2001

[7] A. Cannas da Silva Lectures on Symplectic Geometry, Springer-Verlag, Berlin, 2001

[8] M. Duflo Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup., Volume 10 (1977), pp. 265-288

[9] M. Kashiwara; M. Vergne The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math., Volume 47 (1978), pp. 249-272

[10] F. Rouvière Démonstration de la conjecture de Kashiwara–Vergne pour l'algèbre sl(2), C. R. Acad. Sci. Paris, Série I, Volume 292 (1981) no. 14, pp. 657-660

[11] C. Torossian Sur la conjecture combinatoire de Kashiwara–Vergne (arXiv:) | arXiv

[12] M. Vergne Le centre de l'algèbre enveloppante et la formule de Campbell–Hausdorff, C. R. Acad. Sci. Paris, Série I, Volume 329 (1999) no. 9, pp. 767-772

Cité par Sources :

Commentaires - Politique