We complete in this Note the description of Singer's fourth transfer, already studied by many authors. More precisely, we show that each element of the family belongs to the image of this fourth transfer. Combining this with previous results by R. Bruner, L.M. Hà, T.N. Nam and the first author, we deduce that the image of the algebraic transfer contains all the elements of the families , , and , but none from the families , and .
The method used to prove that elements are in the transfer's image can be applied not only to the family of 's but to the families of 's, 's and 's as well.
Dans cette Note on achève la description du quatriéme transfert de Singer, complétant ainsi le travail de nombreux auteurs. Plus précisement on montre que chaque élément de la famille appartient à l'image du quatriéme transfert. Combinant cela avec des résultats antérieurs de R. Bruner, L.M. Hà, T.N. Nam, et du premier auteur, on en déduit que l'image du transfert algébrique contient chaque élément des quatre familles , , , et , et ne contient aucun élément des trois familles , , and .
La méthode utilisée pour montrer que des éléments sont dans l'image du transfert peut être appliquée non seulement à la famille mais aussi aux familles , , and .
Accepted:
Published online:
Nguyễn H.V. Hu'ng 1; Võ T.N. Quy`nh 1
@article{CRMATH_2009__347_23-24_1415_0, author = {Nguyễn H.V. Hu'ng and V\~o T.N. Quy`nh}, title = {The image of {Singer's} fourth transfer}, journal = {Comptes Rendus. Math\'ematique}, pages = {1415--1418}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.018}, language = {en}, }
Nguyễn H.V. Hu'ng; Võ T.N. Quy`nh. The image of Singer's fourth transfer. Comptes Rendus. Mathématique, Volume 347 (2009) no. 23-24, pp. 1415-1418. doi : 10.1016/j.crma.2009.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.018/
[1] Modular representations on the homology of powers of real projective space, Algebraic Topology: Oaxtepec 1991, Contemp. Math., vol. 146, Amer Math. Soc., Providence, RI, 1993, pp. 49-70
[2] On behavior of the algebraic transfer, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 473-487
[3] Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, Geom. Topol. Publ. Conventry, Volume 11 (2007), pp. 81-105
[4] The weak conjecture on spherical classes, Math. Z., Volume 231 (1999), pp. 727-743
[5] The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 4065-4089
[6] The transfer and stable homotopy theory, Math. Proc. Cambridge Philos. Soc., Volume 83 (1978), pp. 103-111
[7] M. Kameko, Products of projective spaces as Steenrod modules, Thesis, Johns Hopkins University, 1990
[8] The Adams spectral sequence for Minami's theorem, Evanston, II, 1997 (Contemp. Math.), Volume vol. 220, Amer Math. Soc., Providence, RI (1998), pp. 143-177
[9] The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc., Volume 42 (1962)
[10] A General Algebraic Approach to Steenrod Operations, Lecture Notes in Math., vol. 168, Springer-Verlag, 1970 (pp. 153–231)
[11] The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 2325-2351
[12] Transfert algébrique et représentation modulaire du groupe linéare, Ann. Inst. Fourier, Volume 58 (2008), pp. 1785-1837
[13] Quillen stratification for the Steenrod algebra, Ann. of Math., Volume 149 (1999), pp. 421-449
[14] The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523
[15] N. Sum, The hit problem for the polynomial algebra of four variables, preprint, 2007, 240 pp
[16] On the cohomology of the Steenrod algebra, Math. Z., Volume 116 (1970), pp. 18-64
[17] A polynomial subalgebra of the cohomology of the Steenrod algebra, Publ. Res. Inst. Math. Sci., Volume 9 (1973/74), pp. 157-164
Cited by Sources:
☆ The work was supported in part by a grant of the NAFOSTED.
Comments - Policy