Comptes Rendus
Partial Differential Equations
Identification of two independent coefficients with one observation for the Schrödinger operator in an unbounded strip
[Identification de deux coefficients indépendants avec une seule observation pour l'opérateur de Schrödinger dans une bande non bornée]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 149-153.

Dans cet article, il s'agit de prouver un résultat de stabilité pour deux coefficients indépendants (chacun dépendant d'une seule variable) pour un opérateur de Schrödinger avec une seule observation sur une partie non bornée du bord. Nous rappelons l'estimation de Carleman globale prouvée dans Cardoulis et al. (2008) [3]. En utilisant une estimation de type Carleman pour un opérateur différentiel du premier ordre (cf. Immanuvilov et Yamamoto (2005) [4]) ainsi qu'une estimation d'énergie, nous obtenons l'identification simultanée du coefficient de diffusion et du potentiel avec une seule observation.

This article is devoted to prove a stability result for two independent coefficients (each one depending on only one variable) for a Schrödinger operator in an unbounded strip with only one observation on an unbounded subset of the boundary. For that, we first use the global Carleman estimate proved in Cardoulis et al. (2008) [3]. Then, with a Carleman-type estimate for a first order differential operator (cf. Immanuvilov and Yamamoto (2005) [4]) and an energy estimate, we prove the simultaneous identification of the diffusion coefficient and the potential with only one observation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.030

Laure Cardoulis 1, 2 ; Patricia Gaitan 3

1 Université de Toulouse, UT1 CEREMATH, 21, allée de Brienne, 31042 Toulouse cedex, France
2 Institut de Mathématiques de Toulouse, UMR 5219, Toulouse, France
3 Laboratoire d'Analyse, Topologie, Probabilités, CNRS UMR 6632, Universités d'Aix-Marseille, 39, rue Joliot-Curie, 13453 Marseille, France
@article{CRMATH_2010__348_3-4_149_0,
     author = {Laure Cardoulis and Patricia Gaitan},
     title = {Identification of two independent coefficients with one observation for the {Schr\"odinger} operator in an unbounded strip},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {149--153},
     publisher = {Elsevier},
     volume = {348},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crma.2009.10.030},
     language = {en},
}
TY  - JOUR
AU  - Laure Cardoulis
AU  - Patricia Gaitan
TI  - Identification of two independent coefficients with one observation for the Schrödinger operator in an unbounded strip
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 149
EP  - 153
VL  - 348
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2009.10.030
LA  - en
ID  - CRMATH_2010__348_3-4_149_0
ER  - 
%0 Journal Article
%A Laure Cardoulis
%A Patricia Gaitan
%T Identification of two independent coefficients with one observation for the Schrödinger operator in an unbounded strip
%J Comptes Rendus. Mathématique
%D 2010
%P 149-153
%V 348
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2009.10.030
%G en
%F CRMATH_2010__348_3-4_149_0
Laure Cardoulis; Patricia Gaitan. Identification of two independent coefficients with one observation for the Schrödinger operator in an unbounded strip. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 149-153. doi : 10.1016/j.crma.2009.10.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.030/

[1] L. Baudouin; J.P. Puel Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554

[2] L. Cardoulis, P. Gaitan, Simultaneous identification of the diffusion coefficient and the potential for the Schrödinger operator with one observation, Inverse Problems, submitted for publication

[3] L. Cardoulis; M. Cristofol; P. Gaitan Inverse problem for the Schrödinger operator in an unbounded strip, J. Inverse Ill-Posed Probl., Volume 16 (2008) no. 2, pp. 127-146

[4] O.Yu. Immanuvilov; M. Yamamoto Carleman estimates for the non-stationary Lamé system and the application to an inverse problem, ESAIM Control Optim. Calc. Var., Volume 11 (2005) no. 1, pp. 1-56

[5] V. Isakov Inverse Problems for Partial Differential Equations, Springer-Verlag, 1998

[6] M.V. Klibanov; A. Timonov Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2004

[7] M.V. Klibanov; M. Yamamoto Lipshitz stability for an inverse problem for an acoustic equation, Appl. Anal., Volume 85 (2006), pp. 515-538

Cité par Sources :

Commentaires - Politique