[Un problème inverse pour un système hyperbolique dans un domaine borné]
Dans cette Note, on considère un système hyperbolique de deux équations, défini dans un domaine borné. En utilisant la méthode des inégalités de Carleman, on obtient un résultat de stabilité Lipschitz pour les quatre coefficients dépendant de la variable d’espace de ce système, avec des mesures d’une seule composante de la solution et grâce à la donnée de deux ensembles de conditions initiales.
In this Note we consider a two-by-two hyperbolic system defined on a bounded domain. Using Carleman inequalities, we obtain a Lipschitz stability result for the four spatially varying coefficients with measurements of only one component, given two sets of initial conditions.
Révisé le :
Accepté le :
Publié le :
Laure Cardoulis 1
@article{CRMATH_2023__361_G3_653_0, author = {Laure Cardoulis}, title = {An inverse problem for a hyperbolic system in a bounded domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {653--665}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.431}, language = {en}, }
Laure Cardoulis. An inverse problem for a hyperbolic system in a bounded domain. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 653-665. doi : 10.5802/crmath.431. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.431/
[1] Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Probl., Volume 18 (2002) no. 6, pp. 1537-1554 | DOI | Zbl
[2] Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations, Inverse Probl., Volume 34 (2018) no. 1, 015001, 27 pages | MR | Zbl
[3] Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer Monographs in Mathematics, Springer, 2018
[4] Inverse problem for a parabolic system with two components by measurements of one component, Appl. Anal., Volume 88 (2009) no. 5, pp. 683-709 | DOI | MR | Zbl
[5] Global uniqueness of a class of multidimensional inverse problems, Sov. Math., Dokl., Volume 17 (1981), pp. 244-247
[6] An inverse problem for a parabolic system in an unbounded guide (submitted)
[7] Applications of Carleman inequalities for a two-by-two parabolic system in an unbounded guide, Rostocker Math. Kolloq., Volume 72 (2020), pp. 49-71 | MR
[8] An inverse problem for a generalized FitzHug–Nagumo system (in preparation)
[9] An inverse problem for the heat equation in an unbounded guide, Appl. Math. Lett., Volume 62 (2016), pp. 63-68 | DOI | MR | Zbl
[10] Inverse problem for the Schrödinger operator in an unbounded strip, J. Inverse Ill-Posed Probl., Volume 16 (2008), pp. 127-146
[11] A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide, Math. Control Relat. Fields, Volume 11 (2021) no. 4, pp. 965-985 | DOI | MR | Zbl
[12] Inverse problems for a reaction diffusion system using a Carleman estimate with one observation, Inverse Probl., Volume 22 (2006) no. 5, pp. 1561-1573 | DOI | MR | Zbl
[13] Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary, Math. Control Relat. Fields, Volume 6 (2016) no. 3, pp. 407-427 | DOI | MR | Zbl
[14] Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations, Appl. Anal., Volume 90 (2011) no. 9-10, pp. 1499-1520 | DOI | Zbl
[15] Stability for inverse source problems by Carleman estimates, Inverse Probl., Volume 36 (2020) no. 12, 125006, 20 pages | MR | Zbl
[16] An inverse problem for the dynamical Lamé system with two sets of boundary data, Commun. Pure Appl. Math., Volume 56 (2003), pp. 1366-1383 | DOI | Zbl
[17] Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Probl., Volume 17 (2001) no. 4, pp. 717-728 | DOI | MR | Zbl
[18] Global uniqueness and stability in determining coefficients of wave equations, Commun. Partial Differ. Equations, Volume 26 (2001) no. 7-8, pp. 1409-1425 | DOI | Zbl
[19] Determination of a coefficient in an acoustic equation with a single measurement, Inverse Probl., Volume 19 (2003) no. 1, pp. 157-171 | DOI | Zbl
[20] Carleman estimates for the non-stationary Lamé system and the application to an inverse problem, ESAIM, Control Optim. Calc. Var., Volume 11 (2005), pp. 1-56 | DOI | Numdam | Zbl
[21] Inverse problems and Carleman estimates, Inverse Probl., Volume 8 (1992) no. 4, pp. 575-596 | DOI | MR | Zbl
[22] Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl., Volume 21 (2013) no. 4, pp. 477-560 | Zbl
[23] Carleman estimates for parabolic equations and applications, Inverse Probl., Volume 25 (2009) no. 12, 123013, 75 pages | MR | Zbl
[24] Lipschitz stability in the determination of the principal part of a parabolic equation, ESAIM, Control Optim. Calc. Var., Volume 15 (2009) no. 3, pp. 525-554 | DOI | Numdam | MR | Zbl
Cité par Sources :
Commentaires - Politique