[Un problème inverse pour l'opérateur de Schrödinger dans une bande]
Nous démontrons une estimation globale de Carleman et une estimation d'énergie pour l'opérateur de Schrödinger dans une bande non bornée. Ces estimations nous permettent de donner un résultat de stabilité pour le coefficient de diffusion à partir de la mesure de la dérivée normale de la solution sur une partie du bord.
We prove an adapted global Carleman estimate and an energy estimate for the Schrödinger operator in an unbounded strip. Using these estimates, we give a stability result for the diffusion coefficient from the measurement of the normal derivative of the solution on a part of the boundary.
Accepté le :
Publié le :
Laure Cardoulis 1 ; Michel Cristofol 2 ; Patricia Gaitan 2
@article{CRMATH_2008__346_11-12_635_0, author = {Laure Cardoulis and Michel Cristofol and Patricia Gaitan}, title = {Inverse problem for the {Schr\"odinger} operator in an unbounded strip}, journal = {Comptes Rendus. Math\'ematique}, pages = {635--640}, publisher = {Elsevier}, volume = {346}, number = {11-12}, year = {2008}, doi = {10.1016/j.crma.2008.04.004}, language = {en}, }
TY - JOUR AU - Laure Cardoulis AU - Michel Cristofol AU - Patricia Gaitan TI - Inverse problem for the Schrödinger operator in an unbounded strip JO - Comptes Rendus. Mathématique PY - 2008 SP - 635 EP - 640 VL - 346 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2008.04.004 LA - en ID - CRMATH_2008__346_11-12_635_0 ER -
Laure Cardoulis; Michel Cristofol; Patricia Gaitan. Inverse problem for the Schrödinger operator in an unbounded strip. Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 635-640. doi : 10.1016/j.crma.2008.04.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.04.004/
[1] Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554
[2] An inverse problem for the dynamical Lamé system with two set of boundary data, Comm. Pure Appl. Math., Volume 56, 1 (2003) no. 17, pp. 1366-1382
[3] Carleman estimates for the non-stationary Lamé system and the application to an inverse problem, ESAIM Control Optim. Calc. Var., Volume 11 (2005) no. 1, pp. 1-56
[4] Inverse Problems for Partial Differential Equations, Springer-Verlag, 1998
[5] Lipschitz stability for an inverse problem for an acoustic equation, Appl. Anal., Volume 85 (2006), pp. 515-538
[6] Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse and Ill-Posed Series, VSP, Utrecht, 2004
[7] Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates, J. Inv. Ill-Posed Problems, Volume 11 (2003) no. 3, pp. 1-96
Cité par Sources :
Commentaires - Politique