Nous proposons dans la présente Note une méthode pour calculer au premier ordre le comportement homogénéisé d'un milieu consistant en un matériau périodique de référence perturbé de manière stochastique. L'approche, très efficace en termes de coût calcul, admet une justification rigoureuse dans certains cas, et a été testée numériquement avec succès pour des cas plus généraux.
We present in this Note an approach aiming at computing the first-order homogenized behaviour of a medium consisting of a randomly perturbed periodic reference material. The approach, which proves to be very efficient from a computational point of view, is rigorously founded in a certain class of settings and has been successfully numerically tested for more general settings.
Accepté le :
Publié le :
Arnaud Anantharaman 1 ; Claude Le Bris 1
@article{CRMATH_2010__348_9-10_529_0, author = {Arnaud Anantharaman and Claude Le Bris}, title = {Homog\'en\'eisation d'un mat\'eriau p\'eriodique faiblement perturb\'e al\'eatoirement}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--534}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.03.001}, language = {fr}, }
TY - JOUR AU - Arnaud Anantharaman AU - Claude Le Bris TI - Homogénéisation d'un matériau périodique faiblement perturbé aléatoirement JO - Comptes Rendus. Mathématique PY - 2010 SP - 529 EP - 534 VL - 348 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2010.03.001 LA - fr ID - CRMATH_2010__348_9-10_529_0 ER -
Arnaud Anantharaman; Claude Le Bris. Homogénéisation d'un matériau périodique faiblement perturbé aléatoirement. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 529-534. doi : 10.1016/j.crma.2010.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.001/
[1] A. Anantharaman, Thèse de l'Université Paris-Est, en préparation
[2] A. Anantharaman, C. Le Bris, A numerical approach based on defect-type theories for some weakly random problems in homogenization, en préparation
[3] A. Anantharaman, C. Le Bris, Mathematical foundations and genericity of a numerical approach for some weakly random problems in homogenization, en préparation
[4] Damage analysis of fiber composites. Part I : Statistical analysis on fiber scale, Comput. Methods Appl. Mech. Engrg., Volume 172 (1999), pp. 27-77
[5] Stochastic homogenization and random lattices, J. Math. Pures Appl., Volume 88 (2007), pp. 34-63
[6] Approximations of effective coefficients in stochastic homogenization, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Volume 40 (2004) no. 2, pp. 153-165
[7] Approximation numérique d'une classe de problèmes en homogénéisation stochastique, C. R. Acad. Sci. Paris Série I vol., Volume 348 (2010) no. 1–2, pp. 99-103
[8] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994
[9] Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty, International Journal of Solids and Structures, Volume 45 (2008), pp. 894-907
- Analytical representation and efficient computation of the effective conductivity of two‐phase composite materials, International Journal for Numerical Methods in Engineering, Volume 123 (2022) no. 15, p. 3567 | DOI:10.1002/nme.6980
- Tensor-Based Numerical Method for Stochastic Homogenization, Multiscale Modeling Simulation, Volume 20 (2022) no. 1, p. 36 | DOI:10.1137/18m1191221
- Some variance reduction methods for numerical stochastic homogenization, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 374 (2016) no. 2066, p. 20150168 | DOI:10.1098/rsta.2015.0168
- First-order expansion of homogenized coefficients under Bernoulli perturbations, Journal de Mathématiques Pures et Appliquées, Volume 103 (2015) no. 1, p. 68 | DOI:10.1016/j.matpur.2014.03.008
- A Control Variate Approach Based on a Defect-Type Theory for Variance Reduction in Stochastic Homogenization, Multiscale Modeling Simulation, Volume 13 (2015) no. 2, p. 519 | DOI:10.1137/140980120
- Multiscale Finite Element approach for “weakly” random problems and related issues, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 48 (2014) no. 3, p. 815 | DOI:10.1051/m2an/2013122
- MATHEMATICAL MODELING OF POINT DEFECTS IN MATERIALS SCIENCE, Mathematical Models and Methods in Applied Sciences, Volume 23 (2013) no. 10, p. 1795 | DOI:10.1142/s0218202513500528
- Elements of Mathematical Foundations for Numerical Approaches for Weakly Random Homogenization Problems, Communications in Computational Physics, Volume 11 (2012) no. 4, p. 1103 | DOI:10.4208/cicp.030610.010411s
- A Numerical Approach Related to Defect-Type Theories for Some Weakly Random Problems in Homogenization, Multiscale Modeling Simulation, Volume 9 (2011) no. 2, p. 513 | DOI:10.1137/10079639x
- Some Numerical Approaches for Weakly Random Homogenization, Numerical Mathematics and Advanced Applications 2009 (2010), p. 29 | DOI:10.1007/978-3-642-11795-4_3
Cité par 10 documents. Sources : Crossref
Commentaires - Politique