Comptes Rendus
Probability Theory
On the integral representation of g-expectations
Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 571-574.

In this Note, we give a necessary and sufficient condition on deterministic g under which g-expectations can be represented as Choquet expectations.

Dans cette Note, nous donnons une condition nécessaire et suffisante sur g déterministe sous laquelle les g-espérances peut être représentée par les espérances de Choquet.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.04.008

Mingshang Hu 1

1 School of Mathematics, Shandong University, Jinan 250100, China
@article{CRMATH_2010__348_9-10_571_0,
     author = {Mingshang Hu},
     title = {On the integral representation of \protect\emph{g}-expectations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {571--574},
     publisher = {Elsevier},
     volume = {348},
     number = {9-10},
     year = {2010},
     doi = {10.1016/j.crma.2010.04.008},
     language = {en},
}
TY  - JOUR
AU  - Mingshang Hu
TI  - On the integral representation of g-expectations
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 571
EP  - 574
VL  - 348
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2010.04.008
LA  - en
ID  - CRMATH_2010__348_9-10_571_0
ER  - 
%0 Journal Article
%A Mingshang Hu
%T On the integral representation of g-expectations
%J Comptes Rendus. Mathématique
%D 2010
%P 571-574
%V 348
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2010.04.008
%G en
%F CRMATH_2010__348_9-10_571_0
Mingshang Hu. On the integral representation of g-expectations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 571-574. doi : 10.1016/j.crma.2010.04.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.008/

[1] P. Briand; F. Coquet; Y. Hu; J. Mémin; S. Peng A converse comparison theorem for BSDEs and related properties of g-expectation, Electronic Communications in Probability, Volume 5 (2000), pp. 101-117

[2] Z. Chen; T. Chen; M. Davison Choquet expectation and Peng's g-expectation, The Annals of Probability, Volume 33 (2005) no. 3, pp. 1179-1199

[3] Z. Chen; L. Epstein Ambiguity, risk and asset returns in continuous time, Econometrica, Volume 70 (2002), pp. 1403-1443

[4] Z. Chen; R. Kulperger Minimax pricing and Choquet pricing, Insurance: Mathematics and Economics, Volume 38 (2006), pp. 518-528

[5] Z. Chen; A. Sulem An integral representation theorem of g-expectations, Research Report INRIA, Volume 4284 (2001), pp. 1-20

[6] G. Choquet Theory of capacities, Ann. Inst. Fourier (Grenoble), Volume 5 (1953), pp. 131-195

[7] F. Coquet; Y. Hu; J. Mémin; S. Peng Filtration consistent nonlinear expectations and related g-expectations, Probability Theory and Related Fields, Volume 123 (2002), pp. 1-27

[8] D. Denneberg Non-additive Measure and Integral, Kluwer Academic Publishers, Boston, 1994

[9] N. El Karoui; S. Peng; M.C. Quenez Backward stochastic differential equations in finance, Mathematical Finance, Volume 7 (1997), pp. 1-71

[10] M. Hu Choquet expectations and g-expectations with multi-dimensional Brownian motion, 2009 (available via) | arXiv

[11] L. Jiang Convexity, translation invariance and subadditivity for g-expectations and related risk measures, Annals of Applied Probability, Volume 18 (2008) no. 1, pp. 245-258

[12] E. Pardoux; S. Peng Adapted solution of a backward stochastic differential equation, Systems and Control Letters, Volume 14 (1990), pp. 55-61

[13] S. Peng BSDE and stochastic optimizations, topics in stochastic analysis (J. Yan; S. Peng; S. Fang; L.M. Wu, eds.), Lecture Notes of 1995 Summer School in Mathematics, Science Press, Beijing, 1997 Ch. 2 (Chinese vers.)

[14] S. Peng Backward SDE related g-expectations, Backward stochastic differential equations (N. El Karoui; L. Mazliak, eds.), Pitman Research Notes in Mathematics Series, vol. 364, Longman, Harlow, 1997, pp. 141-159

Cited by Sources:

Comments - Policy